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Abstract

Machine Learning is making its way into more and more aspects of our digital
lives. In many applications, Machine Learning is deployed in an “outsourced”
model where the device with the input (e.g., an image) is a different device,
owned by a different entity, than the device with the model (e.g., a Convolutional
Neural Network). Moreover, many modern applications of Machine Learning
operate on sensitive data, be it the images we take or the text we write, and so
being able to stay in control of this data, while still being able to benefit from
Machine Learning, is important moving forward.

Secure Multiparty Computation, or MPC, presents an attractive solution
to exactly this problem, and this thesis presents three concrete ways in which
MPC can be used for secure Machine Learning.

The first application demonstrates protocols for secure computation with
active security that enjoy particular properties that are very well suited for
Machine Learning. The protocols we presented constitute concretely very
efficient protocols for secure computation within the specific setting we consider:
active security with an honest majority over rings. We present two instantiations:
one for 3 parties that is at least as efficient as prior work, and one for any
number of parties which is the first of its kind.

The second application looks at how we would obtain models that are
efficient to evaluate securely. Indeed, secure inference (that is, evaluating
a Machine Learning model securely on some private input) requires various
tweaks with respect to the encoding of values and non-linear functions that are
used. We observe that specific models that were designed to be evaluated on
e.g., smartphones, also work very well for secure inference, and we present a
wide array of benchmarks to confirm this observation.

The final application presents useful tools that are needed in a practical
scenario. Specifically, the tools presented allows the entity with the input to
verify that the model used in the computation was previously certified by a
trusted party. This in particular would be needed in cases where the fairness
of the model could be questioned. In addition, we also present techniques for
proactive secret-sharing which is needed if the shared Machine Learning model
needs to be moved from one set of server to another.
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Resumé

Maskinlæring bliver brugt i et større og større omfang. I mange af de situation
hvor maskinlæring avendes, er enheden der leverer input en anden enhed, ejet
af en anden person, end den enhed der leverer maskinlæringsmodellen. Mange
af disse anvendelser sker desuden på data der er følsomt, såsom personlige
billeder eller tekst, og metoder hvorpå vi kan forblive i kontrol over vores data,
samtidig med at vi kan gøre brug af maskinlærning, er derfor vigtigt.

Sikker flerparts beregning (på engelsk MPC, fra “Secure Multiparty Com-
putation”) giver os en attraktiv løsning til netop dette problem, og denne
afhandling præsenterer tre konkrete måder hvorpå MPC kan anvendes til sikker
maskinlærning.

I den første anvendelse, demonstreres der protokoller til sikker flerparts
beregning med aktiv sikkerhed, og med egenskaber der er specielt attraktive til
sikker maskinlærning. Protokollerne vi præsentere er praktisk effektive i specielt
det scenario vi betragter: navnlig aktiv sikkerhed med en ærlig majoritet til
beregning over ringe. Vi præsentere to protokoller: en der virker for 3 partier
der er mindst ligeså effektiv som tidligere research, samt en for et vilkårligt
antal partier der er den første af sin slags.

I den anden anvendelse kigger vi på metoder hvorved maskinlæringsmodeller
kan anskaffes, således at disse kan evalueres sikkert og ikke mindst effektivt.
Sikker maskinlærning (evaluering af en allerede trænet maskinlæringsmodel på
et hemmeligt input) kræver ofte justering med hensyn til enkodning af værdier,
samt hvilke ikke-lineærer funktioner der anvendes. Vi observerer, at modeller
der er designet til evaluering på f.eks. smartphones, også virker specielt godt
når vi evaluerer dem sikkert, og vi præsentere en lang række eksperimenter der
underbygger denne observation.

I den sidste anvendelse præsentere vi brugbare redskaber der vil være
nødvendige i praktiske scenario. Lidt mere præcist, så præsentere vi protokoller
der kan bruges til at garanterer, at en model der avendes i en sikker beregning,
tidligere er blevet certificeret af en betroet tredjepart. Derudover præsentere vi
også protokoller for såkaldt “proactive secret-sharing” der er nødvendige hvis
en model skal flyttes fra en gruppe af serverer til en anden.
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Chapter 1

Background

Machine Learning is a general term for algorithms that can tell us something
useful without being explicitly programmed to do so. As a silly example, and
to explain the question in the title, one use of Machine Learning is to tell us
whether a specific picture depicts a cat or a croissant. Because there is an
almost infinite amount of pictures of both cats and croissants, it would be
infeasible to construct an algorithm that decides its answer by direct inspection
(i.e., an algorithm which says “if the input is this picture, then it’s a cat”).
A properly trained Machine Learning model, such as a Convolutional Neural
Network, provides us with a means to answer such questions with impressive
accuracy.1

Silly examples aside, Machine Learning has been shown to be useful for
solving a wide variety of problems that were previously thought to be best left
for a human. Machine Learning has for example been used to write scientific
books [143] (in particular an overview of the latest and greatest research
in Lithium-ion batteries); playing video games [141] or board games [137].
Machine Learning has also been demonstrated to be capable of identifying
various cancers from images such as skin cancer [68] or breast cancer [136].
Machine Learning can even generate meaningful text in multiple different
languages, both artificial and natural [33] (see also [92]).

Training and designing Machine Learning models is a long and often stren-
uous process, not least in part due to the large amount of data that is needed.
For example, [68] used a dataset of more than 120 000 images, and [33] used a
corpus of almost a trillion words. Even the process of running the inference
step (that is, using the model after it has been trained) can be computationally
intensive on devices with less computing power. Indeed, modern Convolutional
Neural Networks that perform well in e.g., image recognition tasks often require
computing in the order of billions of arithmetic instructions. While research
into models which work well on more consumer friendly devices (such as smart-

1See https://anderspkd.github.io/blog/cats_or_crossaints.html, or just Ap-
pendix 5.7 for a picture of cats and croissants that look strikingly similar.
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4 CHAPTER 1. BACKGROUND

phones) have been quite active, another typical way of deploying Machine
Learning is as an outsourced service, also called Machine-Learning-as-a-Service,
or MLaaS for short. In the MLaaS setting, the model is stored at a remote
provider who runs the inference tasks on behalf of its users. Most major tech
companies such as Microsoft, Google, Amazon and IBM all provide MLaaS
today.

The widespread use of Machine Learning, and the fact that the entity with
the model (who we will call the model owner) is not always the same as the
entity with the input (the input owner) raises questions with respect to privacy.
Consider for example a group of hospitals that wants to use a MLaaS provider
in order to help practitioners better detect skin cancer in their patients [68].
During an examination, an image x of a patient’s skin is sent to the provider
who runs a Machine Learning algorithm onM (that was trained by the provider
using their proprietary model with data supplied by the hospital) and x, and
returns a prediction (e.g., cancer or no-cancer with confidence so-and-so).

One can imaging that this would help the doctors, since the Machine
Learning algorithm effectively provides a second opinion. However, the issue
in this scenario is that the user needs to send their sensitive input x to a
third party. The prediction algorithm itself is typically lightweight enough
that it can be run on a desktop computer, so one can hope that we can solve
this privacy issue by just storing the model M at every practice. This does
provide privacy for the patient, but what about the intellectual property of the
provider? Indeed, training a model is an expensive process and we have just
given the result of this task to every doctor that use this system. Moreover,
having to replicate M onto a lot of devices is likely to create problems when M
eventually have to be updated. These issues create an impasse which, in order
to be overcome, seemingly implies that we must either sacrifice the privacy of
the model owner or the input owner.

Luckily, this is not so, and Cryptography, specifically “Secure Multiparty
Computation” (abbreviated as MPC ), provides us with a way to overcome this
dilemma. There are, however, a lot of different questions that arise when MPC
is used for secure inference, such as which protocol to use, which models to use
and how to deal with issues not strictly related to privacy. Secure Inference
using MPC or other techniques for secure computation (such as homomorphic
encryption or gabled circuits) have received a lot of attention from the research
community in recent years [42, 109, 116–118, 124, 131, 142] as well as industry
[52, 70]. This thesis contributes to this research by providing solutions for
several practical problems that arise in the context of secure inference.

1.1 Secure Multiparty Computation

Although MPC has its origin in research from the 80s [22, 43, 82, 145], it was
not until the late 2000s before it saw use in real life [28]. Subsequent years have
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seen protocols of increasing speed (e.g., [9] demonstrates a protocol for boolean
computation with a throughput in excess of 1 billion boolean gates per second)
as well as an increase in interest from outside academia. Indeed, there are now
multiple companies that develop and provide MPC based solutions [1–3].

MPC is a technique that allows a set of parties to perform a computation
with some guarantee with respect to privacy. More precisely: an MPC protocol
for a function f is an interactive process2 between n parties P1, . . . , Pn, with
inputs x1, . . . , xn such that, in the end, every party learns z = f(x1, . . . , xn)
and nothing else.

To make this idea of “nothing else” more precise, we will introduce an
adversary A that is allowed to take control of t < n of the parties. Restrictions
on the magnitude of t as well as the actions of the corrupted parties are both
important parameters of any MPC protocol, and plays a direct role in both
their efficiency as well as what is possible to achieve in terms of security.

Corruption threshold. The corruption threshold t of a protocol decides the
number of parties that A is allowed to take control over, and we will draw a
clear line between the case where t < n/2 and the case where t < n. Given
an MPC protocol Π that is secure when A corruptions at most t < n/2 of the
parties, we say Π is secure with an honest majority. Similarly, if Π is secure
when A is allowed to control t < n of the parties, then Π is secure with a
dishonest majority.

The honest majority setting is a weaker threat model than the dishonest
majority one. Indeed, an honest majority implies that not too many parties
collude (for example, with n = 3, an honest majority implies that no one
colludes). No such assumption is needed for the dishonest majority case. It is
therefore not surprising that protocols in the dishonest majority setting, as they
have to be secure against a stronger adversary, are often less efficient than their
honest majority counterpart. Indeed, we can compare the results presented in
Chapter 4 in Table 4.3 and Table 4.4 and see that the difference between these
two settings (all other things equal) is several orders of magnitude in terms of
running time.

Corruption type. Another parameter is with respect to the type of corrup-
tion that A makes. In particular, whether or not the corruptions are passive
or active. In the former case, parties under the control of A are assumed to
follow the protocol, while in the latter case, parties can behave arbitrarily.
Clearly, security against a passive adversary is easier to obtain as in this case
the protocol simply needs to be private (i.e., not leak anything besides what
can be learned from the inputs and outputs). The case of active security is

2Of course, it is possible to think of a function f that always outputs the same thing,
and therefore one for which no interaction is needed. These are likely not very interesting
though, and so we will ignore them.
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potentially more complex as we must ensure that the corrupted parties do no
introduce errors in the computation.

In terms of efficiency, the gap between passive and active security is highly
dependent on the corruption threshold as well. Looking again at Table 4.3 and
Table 4.4 in Chapter 4 the gap between the passive and active protocols are a
lot smaller for protocols with an honest majority, compared to protocols with
a dishonest majority. Moreover, the protocol presented in Chapter 3 has an
overhead of roughly 2× that of the passive protocol, and other techniques (that
are computationally costly) can reduce this even further [32].

Adversary power. The final parameter with which we will parameterize
an MPC protocol is with respect the power of A. In particular whether it is
computationally bounded or not. If A is computationally bounded, then we can
make use of computational assumptions such as those related to the hardness
of Discrete Logarithms in certain groups, or the assumption underlying RSA.

Security

Security of an MPC protocol is shown via simulation, where the idea goes as
follows: Suppose we had access to a trusted third party F which receives the
inputs from all the parties, performs the computation and returns the output.
This trusted third party, or ideal functionality, is clearly secure since all that is
ever revealed is the output. However, F likely does not exist in the real world
and so we will need a practical stand in.

the Universal Composability (UC) framework [36] provides a way to formally
show that a practical protocol Π can act as a stand in for F . Put differently,
instead of using F (which we can’t, as it does not exist) we will show that
some practical protocol Π behaves identically to F . If no one can tell F and Π
apart, then Π must be as secure as F .

Let Z denote the adversary (or, more accurately, the environment in which
a protocol is run). Consider as well two additional adversaries: A and S where
the former is a real world adversary and the latter an ideal world adversary. We
say that Π is secure if Z cannot distinguish between a world in which we run
Π with the adversary A, from the world where we run F with the adversary S.
This can be expressed succinctly by writing EXECZ,F ,S ≈ EXECZ,Π,A.

Given a definition of F and Π we go about showing this indistinguishability
by describing how S is supposed to act. The strategy most often used is for S
to use A internally in order to mimic attacks in the ideal world that A would
carry out in the real world.

One of the attractive features of the UC framework is that security composes.
If we have shown that Π behaves as F , and that we now want to say something
about another protocol Π′ which uses Π as a subprotocol. As before, we would
need to show that Π′ is indistinguishable from some functionality F ′. However,
we do not need to consider some combination of Π and Π′, and we can instead



1.2. SECURE INFERENCE 7

consider a hybrid world in which Π′ is allowed to invoke F . This means that
security can be proven in a piecemeal fashion, which, given the complexity of
many MPC protocols, is a very attractive feature.

Secret-Sharing

MPC protocols typically rely on secret-sharing, of which two schemes in partic-
ular are common: additive secret-sharing and Shamir secret-sharing [135].

Additive secret-sharing proceeds as follows: Let K be a field and s ∈ K
the secret. In order to share s among n parties, we pick s1, . . . , sn uniformly
at random from K such that s =

∑n
i=1 si and give si to party Pi. We use the

notation JsK to mean that each party holds si. Observe that this sharing is
linear. More precisely, given JxK and JyK, parties can locally compute Jx+ yK
by simply adding their respective shares locally. Multiplication is more tricky,
and for additive secret-sharing techniques such as described by Beaver [20] can
be used (so called multiplication triples).

Additive secret-sharing has a threshold of n− 1; that is, any subset of size
n− 1 reveals no information about s. To get more control over this threshold
(for example if we wish that any majority of the parties can recover s) we can
use Shamir secret-sharing. The idea is as follows: To share s ∈ K, we pick a
degree t − 1 polynomial f ∈ K[X] at random such that f(0) = s, and give
to party Pi the evaluation at i, that is s = f(i). Notice that this scheme too
is linear, since parties can locally add their shares to obtain a sharing of the
sum. As before, multiplication presents a bit of an issue, but can be overcome
for example by using the same trick as above (triples) or by using a random
double sharing [58].

1.2 Secure Inference

Recall the two parties involved in secure inference: one is the model owner who
has a model M , and the other is the input owner who has an input x. The
input owner wishes to learn something about x by way of Machine Learning
inference using the model owner’s model M . However, and as should be clear
by now, none of them wish to reveal their input to the other party.

This is, in a nutshell, what is meant by secure inference, and MPC seems
like an obvious candidate for tackling this problem: The model owner and input
owner run an MPC protocol that evaluates the inference algorithm, and which
at the end outputs the result of the inference to the model owner. The security
of the MPC protocol guarantees that the input owner only ever sees the result
of the inference, and that the model owner doesn’t see anything. (Here it is
important to remark that MPC does not protect against e.g., model stealing
attacks [140]. Indeed, these attacks abuse precisely that the input owner sees
the result of the inference.)
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As mentioned in the previous section, two party MPC (which implies a
dishonest majority), is an expensive process. And it might be prohibitively
expensive for computations such as inference, which often requires 100s of
millions of multiplications. Indeed, all the most efficient secure inference
protocols so far rely on an honest majority [54, 109, 124, 142].

There is two ways to go about the honest majority setting. The first is to
involve an additional party that both the model owner and input owner agree
wont collaborate with the other.

The other approach involves so called outsourced computation, and is perhaps
the setting that best fits the MLaaS scenario for secure inference. Outsourced
computation, as the name implies, is a process whereby the parties with the
inputs (the model owner and input owner) outsource the actual computation
to a collection of third parties which perform the actual computation. More
precisely, the model owner and input owner both share their inputs towards a
collection of computing parties P1, . . . , Pn.3 The parties P1, . . . , Pn then run
the secure computation on behalf of the model owner and input owner, and
return the result to the latter. This sort of model has been used in practice
before: e.g., for the danish sugarbeet auction [28], or when computing wage
statistics for the Boston area [46].

There are several attractive features of the outsourced computation model.
First, it permits participation of users even if these do not have a powerful
computer, and second the users do not have to be online during the computation:
they only have to show up at the beginning to provide input, and at the end
to obtain the result. Moreover, because the computing parties can be a fixed
set of computers, it is easier to imagine that these are very well connected,
and so the communication overhead induced by the MPC is less of an issue.4

Finally, certain protocols enjoy an enhanced notion of security in the outsourced
computation setting. Most notably the protocol of Araki et al. [8] which is a
passively secure protocol, but which in addition preserves privacy against a
malicious adversary in the outsourced computation setting (which the authors
call client/server model). This protocol underlines e.g., SecureNN [142] which
is a highly efficient protocol for secure inference.

Secure inference isn’t just running the inference algorithm securely, however,
and several issues arise when inference is run in MPC.

Floating point numbers. A machine learning model M can be viewed as
a large collection of real valued parameters which in turn implies that the
inference is performed using floating point numbers. This is of course not
an issue in the clear, but becomes problematic in MPC that only operate on

3Notice that there is no requirement that this sharing happen at the same time. E.g.,
the model owner could share its model once, and then multiple different users could also use
the system at different later times.

4Indeed, the high efficiency of MPC typically (but not always) assume that parties are
connected in a way where throughput and latency are minor concerns.
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integers (in either a field Zp for a prime p, or ring Z2k). The way real values
are handled in MPC is to treat them as fixed point values. More precisely, for
a value α ∈ R, the secure computation is performed on a ∈ Z where this value
is such that α ≈ a2−` for a fixed scale `.

Addition of two fixed point values is straight forward since, for α, β ∈ R
encoded as a, b, we have that α+ β ≈ a2−` + b2−` = (a+ b)2−`.

Multiplication is a bit more tricky. In particular, αβ ≈ (ab2−`)2−` and
so the fixed point result is obtained by multiplying a and b as integers and
truncating the result by ` bits. There has been a number of protocols for
truncation in recent years; e.g., [34, 54, 107, 117, 118, 124, 127, 142] all contain
protocols for truncation. The most efficient approach is to do what is called a
probabilistic truncation, in which the result might be wrong by a small amount.

Non-linear functions. Another issue we face when performing secure in-
ference is the non-linear functions. While Machine Learning is mostly linear
algebra5 in the form of matrix multiplications or convolutions (which can be
expressed as matrix multiplications), it also involves a significant amount of
functions that are not linear. In more detail, evaluating a Neural Network is
essentially a sequence of non-linear functions f1 to fk where the i’th function
receives zi−1 ·Mi as the input, where zi−i is the output of the previous function
(or layer) and Mi is the parameters from the model associated with the i’th
function.

Convolutional Neural Networks typically employ functions such as rectified
linear units (defined as ReLU(x) = max(0, x)), sigmoid, hyperbolic tanget or
Sign.

Prior work deals with these functions in a variety of ways. For ReLU,
efficient bit extraction is required (in order to compute max, which requires a
comparison). ABY3 [117] and BLAZE [124] both achieve this by computing a
parallel prefix adders. SecureNN [142] on the other hand use a property of the
rings Z2k and Z2k−1 in order to obtain a protocol which computes the most
significant bit of a value, by way of finding the least significant bit of a slightly
different value.

Other activation functions are often approximated using polynomials, al-
though previous work such as SecureML [118] have shown the polynomial used
needs to be of a fairly high degree before a good accuracy can be obtained.

Other works such as Delphi [116] explores a mix of simpler, more efficient
custom activation functions (such as the function x 7→ x2) together with
standard activation functions (such as the ReLU activation function).

5https://xkcd.com/1838/

https://xkcd.com/1838/




Chapter 2

Techniques for Secure Inference

The following chapter outlines and introduces the research I have been engaged
in during my roughly 3 years of study. As the chapter title implies, the focus
will be on techniques that are useful for (practical) secure inference. However,
this area of research is by no means the only area I have been involved in, and
I have been involved in projects on personal cloud storage [53, 57],1 machine
learning [54], honest majority MPC [6, 55], and threshold public-crypto schemes
[11, 56].

That being said, of these works, this thesis focuses on three in particular:

• An Efficient Passive-to-Active Compiler for rings [6]. This work presents
a highly efficient compiler that turns a passively secure protocol into an
actively secure one with very little overhead. This compiler works for
rings, and preserve some attractive features of the passive protocol in the
context of Machine Learning.

• Secure Inference of Quantized Neural Networks [54]. This work examines
certain types of Convolution Neural Network models which (1) can be
trained with Tensorflow, and (2) be evaluated without tweaking in MPC.
We moreover provide optimized protocols for truncation, as well as a very
large set of benchmarks that give a unique insight into the efficiency of
secure inference with various MPC protocols.

• LSS Homomorphisms and Applications to Secure Signatures, Proactive
Secret Sharing and Input Certification [11]. This final work formalizes
techniques for running any pairing based scheme with any MPC protocol.
We apply our technique to two concrete applications: proactive secret-
sharing and input certification.

1Note that [57] was done during my Masters; and [53] builds on some of the observations
made therein.

11
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The next couple of sections goes a bit more into the details of these three
works, and the chapter concludes with a short overview of the other research I
have done.

2.1 Fast Actively Secure Computation over rings

Protocols for secure computation over rings, in particular Z2k , have received a
good amount of attention in recent years—and for good reason. Operations
in the ring Z232 or Z264 correspond precisely to the operations on fixed width
integers that is supported natively on a modern computer and so are very fast.
This is in contrast to the more usual setting for MPC where the algebraic
structure used is Zp with p being a prime. Notably, even if p is chosen as a
prime which allow a fast reduction procedure (such as a Mersenne prime) this
reduction nevertheless incurs a small overhead that is avoided by working over
a ring of similar size.

The protocol compiler we present in Chapter 3 provides a technique that
turns a passively secure protocol into an actively secure one, where the overhead
is very small in concrete terms. In a nutshell, the overhead is only roughly
twice that of the passive protocol.

The idea behind our compiler is similar to the one in [45] where two instances
of the passive protocol are run alongside each other, but where one instance
is randomized by an unknown random value. That is, at every point during
the computation, each party holds shares of JxK and Jr · xK where x is the
actual wire value and r a random secret-shared value. The adaption is not
straightforward, however, and there are a number of subtle issues that arise
when working over a ring as opposed to over a field.

The efficiency of our compiler is demonstrated by providing two concrete
instantiations: One based on replicated secret-sharing ala [8] for 3 parties;
the other is based on Shamir secret-sharing over rings based on the protocol
presented in [5]. For the 3 party instantiation, we perform an experimental
comparison against a collection of recent very efficient protocols also for 3
parties as presented in [67] and conclude that ours is as fast, and even faster
in some scenarios. For the n instantiation, we remark that this paper was the
first to report any kind of implementation for general MPC over rings with an
honest majority and as such there is no direct work to compare against. We
therefore compare it against the field based protocol in [45] and show that it is
comparable in terms of efficiency. It is worth remarking that the protocol of
[5] that we base ours on, induce a log n overhead, since computation have to
be performed over an extension of Z2k in order for interpolation to work.

Finally, both our protocols enjoy the particularly attractive property of
having free inner products. That is, computing 〈x,y〉 securely has the cost
of only a single secure multiplication regardless of the length of x and y. For
Machine Learning, where the bulk of the computation requires operations
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on matrices, this is indeed a nice feature to have, and has been pointed out
in several subsequent works such as e.g., BLAZE [124]. Furthermore, our 3
party instantiation is the first protocol that obtains this property for active
security without relying on preprocessing (e.g., [124] requires function dependent
preprocessing in order to obtain cheap inner products).

Bibliography information
Mark Abspoel, Anders Dalskov, Daniel Escudero, and Ariel Nof. An
efficient passive-to-active compiler for honest-majority mpc over rings.
Cryptology ePrint Archive, Report 2019/1298, 2019. https://eprint.
iacr.org/2019/1298. Currently under submission.

2.2 Models for Secure Inference

Prior works on secure inference often only treats the question of how to obtain
the models that will be evaluated in a superficial manner. Since secure inference
ultimately requires some modifications—like using a fixed point encoding,
or altering the activation functions—how to easily obtain a model that can
evaluated securely is nevertheless an important question to ask.

In Chapter 4 we look towards so-called “quantized” models as candidates
for models which can evaluated efficiently by an MPC protocol without having
to make any tweaks to the model. Quantization is a technique from Machine
Learning which attempts to design models which are lightweight, in particular
so they are efficient to evaluate on devices that a resource-wise constrained.
Quantization is moreover implemented and supported in most major Machine
Learning frameworks such as Tensorflow or Pytorch.2 As it turns out, many of
the optimizations that are made to make inference efficient on e.g., smartphones,
also help making inference efficient in MPC.

We present a generic way of evaluating these quantized models, that is, a
way that does not depend on the underlying MPC protocol. We then benchmark
inference of a class of large models for image prediction that are being used
in practice (so-called MobileNets models that were developed by Google and
which are used in many mobile applications). Each of our benchmarks are run
with essentially all possible combinations of parameters for the MPC: that is,
honest and dishonest majority, passive and active security, as well as over a
field and over a ring. These experiments show first and foremost that quantized
models are useful and efficient for secure inference, but also show more generally
an interesting insight into the trade-offs between different MPC threatmodels.

Finally, we also provide optimized protocols for the most efficient setting
(honest majority with passive security for computation over a ring) and bench-

2While Chapter 4 focuses exclusively on models than can be obtained from Tensorflow,
other popular frameworks such as pytorch and MXNet also support the same kind of
quantization and so our techniques apply to models from these frameworks as well.

https://eprint.iacr.org/2019/1298
https://eprint.iacr.org/2019/1298
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mark this particular instance against the previous fastest protocols for secure
inference from CrypTFlow [109], and we show that we outperform it by a
significant margin.

Bibliography information
Anders Dalskov, Daniel Escudero, and Marcel Keller. Secure evaluation
of quantized neural networks. Proceedings on Privacy Enhancing Tech-
nologies, 2020 (4): 355 – 375, 01 Oct. 2020. doi: https://doi.org/10.2478/popets-
2020-0077 URL https://content.sciendo.com/view/journals/popets/
2020/4/article-p355.xml.

2.3 Certifying inputs

Finally, Chapter 5 presents techniques that are useful for practical deployments
of secure inference (and other problems as well).

This work presents techniques for computing any bilinear function in MPC—
in particular, this technique allows one to securely compute schemes that rely
on cryptographic pairings. Chapter 5 shows how to perform such computations
in a general way, i.e., independent of the underlying secret-sharing scheme (so
long as the secret-sharing scheme is linear and defined over some vector space).
We show first how these techniques can be used to compute Pointcheval-Sanders
signatures [126] and then present two applications, one of which is of particular
interest to the topic of this thesis. The first application is an dynamic proactive
secret-sharing scheme with abort which outperforms the current comparable
state of the art [113]; the second application is input certification for MPC
which, for a large number of messages, outperform the previous only scheme
which performs input certification with signatures [26].

Fairness is currently an active research area (see e.g., [17]), and fairness of
Machine Learning models does not stop being a concern simply because the
model is now hidden. In fact, MPC makes it quite explicit that the model owner
might try to cheat and so fairness of the model they input should be ensured.
The input certification application we demonstrate in this work provides a
solution for this problem. The experiments we report on can be used to get an
idea of how costly certifying a Machine Learning model would be. For example,
the models we consider in [54] have between 0.5 and 4.2 million parameters.
Thus the implementation we report on shows that we can certify the smallest
model in around 80 seconds, and the largest in around 10 minutes. It is worth
noting that this certification only has to happen once: after the computing
parties have obtained (and verified) a secret-shared model, they can use it for
many subsequent computations.

Finally, the proactive secret-sharing application we show is also useful for
secure inference. Indeed, if one or more of the computing parties need to be

https://content.sciendo.com/view/journals/popets/2020/4/article-p355.xml
https://content.sciendo.com/view/journals/popets/2020/4/article-p355.xml
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replaced, then our proactive secret-sharing protocol can be used to transfer the
secret-shared model without involving the model owner.

Bibliography information
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secret sharing and input certification. Cryptology ePrint Archive, Re-
port 2020/691, 2020. https://eprint.iacr.org/2020/691. Currently
under submission

2.4 Additional Research Activity

The above works are not the only research I have been involved in, and the
final part of this chapter provides short summaries of the some of my other
research.

Threshold ECDSA and DNSSEC

The techniques developed in [11] were based on tricks that was used in another
work of mine [56]. In [56] we use the idea of performing MPC “in the exponent”
to obtain highly efficient yet generic protocols for threshold ECDSA, and
demonstrate an application to DNSSEC. (The term generic here is the same as
in [54], i.e., our threshold ECDSA scheme does not rely on particular properties
of a specific MPC protocol.) We further make the interesting observation in
[56] that much of the material needed when computing a threshold ECDSA
signature can be preprocessed, which results in very fast signing times when
amortization is taken into account.

Bibliography information
Anders Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and
Haya Shulman. Securing DNSSEC Keys via Threshold ECDSA from
Generic MPC. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve
Schneider, editors, Computer Security – ESORICS 2020, pages 654–673,
Cham, 2020. Springer International Publishing. ISBN 978-3-030-59013-
0.

Circuit Amortization Friendly Encodings

In [55] we present a number of encoding schemes in order to make computation
over Z2k with Shamir secret-sharing more efficient. Shamir secret-sharing over
Z2k requires working over an extension of degree log n in order for interpolation
to work. The encodings we present here makes use of “the extra space” in this
extension in order to e.g., compute several circuits in parallel, or compute small
inner products. We moreover present an efficient statistically secure check

https://eprint.iacr.org/2020/691
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of random double-shares. We implement all of our encodings and show that
they outperform the double-share generation protocol of [5], which was also
implemented.

Bibliography information
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2020/1053, 2020. https://eprint.iacr.org/2020/1053. Will appear
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Two-Factor Secure Personal Cloud Storage

In [53] we develop a simple solution for personal cloud storage with two-factor
security. Our system permits the user to lose control over one of their devices,
without denying them access. That is, we obtain a system that provides both
a notion of two-factor security as well as recovery. The idea, in a nutshell, is
to involve the storage provider in a way which effectively gives us a system of
three parties where no one colludes.

Bibliography information
Anders Dalskov, Daniele Lain, Enis Ulqinaku, Kari Kostiainen, and Srd-
jan Capcun. 2FE: Two-factor Encryption for Cloud Storage. Currently
under submission.
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An Efficient Passive-to-Active
Compiler for rings
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Abstract. Multiparty computation (MPC) over rings such as Z232 or
Z264 has received a great deal of attention recently due to its ease of
implementation and attractive performance. Several actively secure
protocols over these rings have been implemented, for both the dishonest
majority setting and the setting of three parties with one corruption.
However, in the honest majority setting, no concretely efficient protocol
for arithmetic computation over rings has yet been proposed that allows
for an arbitrary number of parties.

We present a novel compiler for MPC over the ring Z2k in the
honest majority setting turns a semi-honest protocol into an actively
secure protocol with very little overhead. The communication cost per
multiplication is only twice that of the semi-honest protocol, making
the resultant actively secure protocol almost as fast.

To demonstrate the efficiency of our compiler, we implement both an
optimized 3-party variant (based on replicated secret-sharing), as well
as a protocol for n parties (based on a recent protocol from TCC 2019).
For the 3-party variant, we obtain a protocol which outperforms the
previous state of the art that we can experimentally compare against.
Our n-party variant is the first implementation for this particular setting,
and we show that it performs comparably to the current state of the art
over fields.
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3.1 Introduction

Multiparty computation (MPC) is a cryptographic tool that allows multiple
parties to compute a given function on private inputs whilst revealing only
its output; in particular, parties’ inputs and the intermediate values of the
computation remain hidden. MPC has by now been studied for several decades,
and different protocols have been developed throughout the years.

Most MPC protocols are “general purpose”, meaning that they can in princi-
ple compute any computable function. This generality is typically obtained by
representing the function as an arithmetic circuit modulo some integer p. Note
that implied in this representation, is a set of integers on which computation
can be performed. Traditionally, MPC protocols are classified as being either
boolean or arithmetic, where the former have p = 2 and the latter has p > 2.
However, most of the existing arithmetic MPC protocols, independently of
their security, require the modulus to be a prime (and for some protocols this
prime must be large) [21, 23, 45, 59, 75, 104, 111].

It was only recently that practical protocols in the arithmetic setting for a
non-prime modulus were developed. The SPDZ2k protocol securely evaluates
functions in the dishonest majority case [51], while several other works focus on
honest majority case for small number of parties [5, 45, 67, 75]. Computation
over Z2k is appealing due benefits in performance over computation over fields,
as verified in [62]. These benefits are partly due to the fact that arithmetic
over rings like Z232 or Z264 can be implemented more efficiently in modern
hardware than arithmetic over Fp, which requires a software implementation
for reduction modulo p. Also, non-arithmetic operations like comparison and
truncation become simpler and more efficient in this setting [62, 117]. Though
results are recent, MPC over rings has already been used in applications like
privacy-preserving machine learning and secure evaluation of neural networks
[54, 117, 118, 142]. However, to this date, no concretely-efficient protocol that
works for any number of parties has been proposed in the honest majority
setting.

Our Contributions

In this work, we develop highly efficient protocols over Z2k by presenting a
generic compiler that transforms a passively secure protocol for computation
over Z2k+s in the honest majority setting, to a protocol over the ring Z2k that
is actively secure with abort and provides roughly s bits of statistical security.
Summarizing our contributions:

• Our compiler requires the passively secure protocol to be secure up to an
additive attack. That is, an active adversary can at most introduce an
additive error in the passively secure protocol. This was shown to be the
case for multiple well-known protocols over fields in [78], a result which
we extend in our paper to recent protocols over rings.
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• Our compiler is highly efficient and the overhead is essentially just twice
that of the passively secure protocol. More precisely, each multiplication
just needs to be evaluated twice.

• Our compiler preserves all the properties of the passive secure protocol.
In particular we obtain the first actively secure protocols where the cost
of dot products is independent on their length without relying on an
expensive function dependent preprocessing such as is the case for prior
work [41, 67, 75, 124].

• Finally, we provide two instantiations and show through experiments that
they are concretely efficient: One for 3 parties based on replicated secret
sharing, and one for n parties based on the recent by Abspoel et al. [5].

– Our 3 party instantiation is shown experimentally as well as the-
oretically to outperform current state of the art that deal with 3
party computation [67, 124].

– Our n party instantiation is the first practical (as in shown ex-
perimentally to be concretely efficient) example of such a protocol
for Z2k with active security and an honest majority. The protocol
from [5] requires 3(k + s) log n bits per multiplication in the online
phase; however we describe a novel optimization that removes the
log n factor that might be of independent interest. We compare our
protocol against [45], which is a recent and highly efficient protocol
for fields and show here that our protocol is comparable in terms of
efficiency.

Outline. Section 3.2 introduces some of the definitions we will be needing and
Section 3.3 introduces the building blocks we need in our compiler. In Section
3.4 our main protocol (i.e., our compiler) is presented, as well as the formal
statements of security, the proofs of which are placed in the Appendix due to
space constraints (Appendix 5.7). We then present the n party instantiation in
Section 3.5. Our three party instantiation is located in Appendix 5.7; as it is
technically less interesting than our n party protocol, we chose to put it in the
appendix due to the limited space. Finally, Section 3.6 discusses comparison
with prior works, as well as presents our experimental results.

Related Work

The only previous general compiler with concrete efficiency over rings, to the
best of our knowledge, is the compiler of [60], which was improved by [67].
However, their compiler does not preserve the adversary threshold when moving
from passive to active security. In addition, in [60] and [67] the compiler was
instantiated for the 3-party case only.
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The only concretely efficient protocol for arithmetic computation over rings
that works for any number of parties is the SPDZ2k protocol [51] which was
proven to be practical in [62]. This protocol is for the dishonest majority and
thus requires the use of much heavier machinery, which makes it orders of
magnitudes slower than ours. However, they deal with a more complicated
setting and provide stronger security.

In the three-party setting with one corruption, there are several works
which provide high efficiency for arithmetic computations over rings. The
Sharemind protocol [27] is being used to solve real-world problems but provides
only passive security. The actively secure protocol of [75], which was optimized
and implemented in [9], is based on the “cut–and–choose” approach and will
be favorable when working over small rings. The actively secure three-party
protocol of [67] is the closest to our protocol in the sense that they also focus
on efficiency for large rings. The overall communication per multiplication gate
of their protocol is 3(k+s) bits sent by each party, which is higher than ours by
(k+s) bits. We provide a detailed empirical comparison with [67] in Section 3.6.
Finally, a new promising direction was presented by [32], but their verification
step takes several seconds for a 1-million gate over fields, and this is expected
to be orders of magnitude worse for rings due to the need of large-degree
Galois ring extensions. The protocols of [41, 124] have a slightly overall higher
bandwidth than [9], but focus on minimizing online (input-dependent) cost
and they tailor their protocols to specific applications for machine learning.
Also, [124] uses the techniques from [32] for the preprocessing, so it is unlikely
to provide any efficiency in practice.

Finally, it is important to mention that the techniques from [32], which
work for 3 parties, can be generalized to multiple parties as a passive-to-active
compiler. This has been done in [88] over fields, and it is not hard to see that
these techniques can be made to work over Z2k by considering large-degree
Galois ring extensions, as done in [32]. However, this method is not practical
as even small degree extension can be quite expensive, as shown in this work.
Furthermore, the round complexity of the passively secure protocol is not
preserved by this transformation.

3.2 Preliminaries and Definitions

Notation. Let P1, . . . , Pn denote the n parties participating in the computa-
tion, and let t denote the number of corrupted parties. In this work, we assume
an honest majority, and thus t < n

2 . Throughout the paper, we use H to denote
the subset of honest parties and C to denote the subset of corrupted parties.
We use [n] to denote the set {1, . . . , n}. ZM denotes the ring of integers modulo
M , and the congruence x ≡ y mod 2` is denoted by x ≡` y.

We use the standard definition of security based on the ideal/real model
paradigm [35, 81], with security formalized for non-unanimous abort. This
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means that the adversary first receives the output, and then determines for each
honest party whether they will receive abort or receive their correct output. It
is easy to modify our protocols so that the honest parties unanimously abort by
running a single (weak) Byzantine agreement at the end of the execution [84].
For simplicity, we omit this step from the description of our protocols. Our
protocol is cast in the synchronous model of communication, in which it is
assumed that the parties share a common clock and protocols can be executed
in rounds.

Linear Secret Sharing and its Properties

Let ` be a positive integer. A perfect (t, n)-secret-sharing scheme (SSS) over
Z2` distributes an input x ∈ Z2` among the n parties P1, . . . , Pn, giving shares
to each one of them in such a way that any subset of at least t+ 1 parties can
reconstruct x from their shares, but any subset of at most t parties cannot
learn anything about x from their shares. We denote by share(x) the sharing
interactive procedure and by open(JxK) the procedure to open a sharing and
reveal the secret. The share procedure may take also in addition to x, a set
of shares {xi}i∈J for J ⊂ [n] and |J | ≤ t, such that share(x, {xi}i∈J) satisfies
JxK = (x′1, . . . , x

′
n), with x′i = xi for i ∈ J . The open procedure may take an

index i as an additional input. In this case, the secret is revealed to Pi only. In
case the sharing JxK is not correct as defined below, open(JxK) will output ⊥.
An SSS is linear if it allows the parties to obtain shares of linear combinations
of secret-shared values without interaction.

Our compiler applies to any linear SSS over Z2k that has a multiplication
protocol that is secure against additive attacks, as defined in Section 3.2. The
only extra, non-standard properties required by our compiler are the following
(for a formalization of the requirements of the SSS, see the full version of this
work):

Modular Reduction. We assume that the open procedure is compatible with
modular reduction, meaning that for any 0 ≤ `′ ≤ ` and any x ∈ Z2` ,
reducing each share in JxK` modulo 2`

′ yields shares Jx mod 2`
′K`′ . We

denote this by JxK` → JxK`′ .

Multiplication by 1/2. Given a shared value JxK`, we assume if all the shares
are even then shifting these shares to the right yields shares Jx′K`−1, where
x′ = x/2.1

Throughout the entire paper, we set the threshold for the secret-sharing
scheme to be bn−1

2 c, and we denote by t the number of corrupted parties. Now
we define what it means for the parties to have correct shares of some value.

1If all the shares JxK` are even then these shares may be written as JxK` = 2 · JyK`, which,
by the homomorphism property, are shares of 2 · y. Since these are shares of x as well, this
shows that x ≡` 2 · y, so x is even.
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Let J be a subset of honest parties of size t+1, and denote by val(v)J the value
obtained by these parties after running the open protocol, where no corrupted
parties or additional honest parties participate, i.e. open(JvKJ). Note that
val(v)J may equal ⊥ and in this case we say that the shares held by the honest
parties are not valid. Informally, a secret sharing is correct if every subset of
t+ 1 honest parties reconstruct the same value (which is not ⊥).

Secure Multiplication up to Additive Attacks [78, 79]

Our construction works by running a multiplication protocol (for multiplying
two values that are shared among the parties) that is not fully secure in the
presence of a malicious adversary and then running a verification step that
enables the honest parties to detect cheating. In order to achieve this, we start
with a multiplication protocols with the property that the adversary’s ability
to cheat is limited to carrying out a so-called “additive attack” on the output.
Formally, we say that a multiplication protocol is secure up to an additive
attack if it realizes the functionality FMult, which receives input sharings JxK
and JyK from the honest parties and an additive value d from the adversary, and
outputs a sharing of x · y + d. Since the corrupted parties can determine their
own shares in the protocol, the functionality allows the adversary to provide
the shares of the corrupted parties, but this reveals nothing about the shared
value.

The requirements defined by this functionality can be met by some semi-
honest multiplication protocols over Z2` , namely replicated secret sharing and
the more recent protocol of Cramer et al. [5], which is an extension of Shamir
Secret Sharing to the setting of Z2` . This will allow us to implement this
functionality in a very efficient way.

In addition to the above, we consider a similar functionality FDotProduct

that, instead of computing one single multiplication, allows the parties to
securely compute the dot product of two vectors of shares, where the adversary
is allowed to inject an additive error to the final output. As in [45], we will
show that the functionality can be realized at almost the same cost as FMult.

3.3 Building Blocks and Sub-Protocols

Our compiler requires a series of building blocks in order to operate. These
include generation of random shares and public coin-tossing, as well as broadcast.
Furthermore, a core step of our compiler is checking that a shared value is
zero, leaking nothing more than this binary information. This is not easy to
instantiate over Z2k , and we discuss this in Section 3.3. We stress that our
presentation here is very general and it assumes nothing about the underlying
secret sharing scheme beyond the properties stated in Section 3.2.
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FRand – Generating Random Coins. We define the ideal functionality FRand

to generate a sharing of a random value unknown to the parties. The
functionality lets the adversary choose the corrupted parties’ shares,
which together with the random secret chosen by the functionality, are
used to compute the shares of the honest parties. The way to compute
this functionality depends on the specific secret sharing scheme that is
being used, and we discuss concrete instantiations later on.

FCoin – Generating Random Coins. FCoin(`) is an ideal functionality that
chooses a random element from Z2` and hands it to all parties.

FBC – Broadcast with Abort. With this functionality, a given party sends
a message to all other parties, with the guarantee that all the honest
parties agree on the same value. Furthermore, if the sender is honest,
the agreed value is precisely the one that the sender sent. The protocol
may produce abort, and can be instantiated using the well-known echo-
broadcast protocol, where the parties echo the message they received and
send it the other parties.

FInput – Secure Sharing of Inputs. This is a functionality that allows a
party to distribute consistent shares of its input. This can be instantiated
generically by sampling JrK using FRand, reconstructing this value to
the party who will provide input x, and letting this party broadcast
the difference x − r. The parties can then compute the shares JxK =
(x− r) + JrK.

FCheckZero – Checking Equality to 0

For our compiler we require a functionality FCheckZero(`), which receives JvKH`
from the honest parties, uses them to compute v and sends accept to all parties
if v ≡` 0. Else, if v 6≡` 0, the functionality sends reject.

A simple way to approach this problem when working over a field is sampling
a random multiplicative mask JrK, multiply Jr · vK = JrK · JvK, open r · v and
check that it is equal to zero. Clearly, since r is random then r · v looks also
random if v 6= 0. However, this technique does not work over the ring Z2` : for
example, if v is a non-zero even number then r · v is always even, which reveals
too much about v. In this section we present a generic protocol to solve the
problem of checking equality of zero over the ring, which is unfortunately more
expensive and complicated than the protocol over fields described above. On
the upside, this check is only called once in a full execution of the main protocol
and so the complexity of this technique is amortized away. Furthermore, for 3
parties for example, one can get a much more efficient solution, as we show in
Section 5.7 in the appendix.

Our general protocol to compute FCheckZero is described in Protocol 1. We
consider two functionalities, FCorrectMult and FRandBit, that compute correct
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multiplications and sample shared random bits, respectively. We discuss in
Appendix ?? how to instantiate these functionalities for any secret sharing
scheme.

Protocol 1 Checking Equality to 0

Inputs: The parties hold a sharing JvK`.

1. The parties call FRandBit to get ` random shared bits Jr0K`, . . . , Jr`−1K`.

2. The parties bit-decompose v:

a) The parties compute JrK` =
∑`−1

i=0 2i · JriK`.
b) The parties call c = open(JvK` + JrK`) and bit-decompose this

value as (c0, . . . , c`−1).

c) The parties locally convert JriK` → JriK1 for i = 1, . . . , `− 1.

3. The parties check that all the bits of v mod 2` are zero:

a) The parties use FCorrectMult(1) to compute
∨`−1
i=0(JriK1 ⊕ ci) and

open this result.

b) If the opened value above is equal to 0 then the parties output
accept. Otherwise they output reject.

We have the following proposition.

Proposition 1. Protocol 1 securely computes FCheckZero with abort in the
(FRandBit,FCorrectMult)-hybrid model in the presence of malicious adversaries
who control t < n/2 parties.

3.4 The Main Protocol for Rings

In this section, we present our construction to compute arithmetic circuits over
the ring Z2k . A formal description appears in Protocol 2. Our protocol follows
the paradigm of [45], which roughly works by running a “redundant” copy of
the circuit where each shared wire value JwK is accompanied by Jr ·wK for some
global uniformly random r. In [45] it was shown that such a “dual” execution
allows the parties to perform a simple check to ensure that no additive errors
were introduced in the multiplication gates. However, such check does not
directly work over Z2k , given that it relies on the fact that every non-zero
element must be invertible, which only holds over fields.

In order to reduce the cheating success probability, we borrow the idea
of [51] of working on the larger ring Z2k+s . As we will show below, this ensures
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that a similar check to that in [45] over fields can be carried out over Z2k+s ,
ensuring no additive attacks over Z2k are carried out, except with probability
at most 2−s.

Protocol 2 Computing Arithmetic Circuits Over the Ring Z2k

Inputs: Each party Pj (j ∈ {1, . . . , n}) holds an input xj ∈ ZL
2k
.

Auxiliary Input: The parties hold the description of an arithmetic circuit
C over Z2k that computes f on inputs of length M = L · n. Let N be
the number of multiplication gates in C. In addition, the parties hold a
parameter s ∈ N.

1. Secret sharing the inputs:

a) For each input xj held by party Pj , party Pj represent it as an
element of ZL

2k+s and sends xj to FInput(k + s).

b) Each party Pj records its vector of shares (xj1, . . . , x
j
M ) of all inputs,

as received from FInput(k + s). If a party received ⊥ from FInput,
then it sends abort to the other parties and halts.

2. Generate randomizing shares: The parties call FRand(k + s) to receive
JrKk+s, where r ∈R Z2k+s .

3. Randomization of inputs: For each input wire sharing JvmKk+s (where
m ∈ {1, . . . ,M}) the parties call FMult on JrKk+s to receive Jr · vmKk+s.

4. Circuit emulation: The parties traverse over the circuit in topological
order. For each gate G` the parties work as follows:

• G` is an addition gate: Given tuples (JxKk+s, Jr · xKk+s) and
(JyKk+s, Jr · yKk+s) on the left and right input wires respectively, the
parties locally compute (Jx+ yKk+s, Jr · (x+ y)Kk+s).

• G` is a multiplication-by-a-constant gate: Given a constant a ∈ Z2k

and tuple (JxKk+s, Jr · xKk+s) on the input wire, the parties locally
compute (Ja · xKk+s, Jr · (a · x)Kk+s).

• G` is a multiplication gate: Given tuples (JxKk+s, Jr · xKk+s) and
(JyKk+s, Jr · yKk+s) on the left and right input wires respectively:

a) The parties call FMult on JxKk+s and JyKk+s to receive Jx · yKk+s.
b) The parties call FMult on Jr·xKk+s and JyKk+s to receive Jr·x·yKk+s.

5. Verification stage: Let {(JziKk+s, Jr · ziKk+s)}Ni=1 be the tuples on the
output wires of all multiplication gates and let {JvmKk+s, Jr · vmKk+s}Mm=1

be the tuples on the input wires of the circuit.
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a) For m = 1, . . . ,M , the parties call FRand(k+ s) to receive JβmKk+s.

b) For i = 1, . . . , N , the parties call FRand(k + s) to receive JαiKk+s.

c) Compute linear combinations:

i. The parties call FDotProduct on
(Jα1Kk+s, . . . , JαN Kk+s, Jβ1Kk+s, . . . , JβM Kk+s) and
(Jr · z1Kk+s, . . . , Jr, ·zN Kk+s, Jr · v1Kk+s, . . . , Jr · vM Kk+s)
to obtain
JuKk+s = J

∑N
i=1 αi · (r · zi) +

∑M
m=1 βm · (r · vm)Kk+s.

ii. The parties call FDotProduct on (α1, . . . , αN , β1, . . . , βM ) and
(Jz1Kk+s, . . . , JzN Kk+s, Jv1Kk+s, . . . , JvM Kk+s) to obtain
JwKk+s = J

∑N
i=1 αi · zi +

∑M
m=1 βm · vmKk+s.

d) The parties run open(JrKk+s) to receive r.

e) Each party locally computes JT Kk+s = JuKk+s − r · JwKk+s.

f) The parties call FCheckZero(k + s) on JT Kk+s. If FCheckZero(k + s)
outputs reject, the parties output ⊥ and abort. If it outputs
accept, they proceed.

6. Output reconstruction: For each output wire of the circuit with JvKk+s,
the parties locally convert to JvKk. Then, they run v mod 2k =
open(JvKk, j), where Pj is the party whose output is on the wire. If Pj
received ⊥ from the open procedure, then it sends ⊥ to the other parties,
outputs ⊥ and halts.

Output: If a party has not aborted, then it outputs the values received
on its output wires.

At the core of the security of our protocol lies the following lemma, which
shows that an additive attack that is non-zero modulo k in any multiplication
gate leads to failure in the final check to zero, with overwhelming probability.

Lemma 1. If A sends an additive value d 6≡k 0 in any of the calls to FMult in
the execution of Protocol 2, then the value T computed in the verification stage
of Step 5 equals 0 with probability 2−s+log(s+1).

The proof of Lemma 1 is in Appendix 5.7.
The security of Protocol 2 now follows as Lemma 1 shows that additive

errors that are non-zero modulo 2k cannot take place without leading to abort.
However, one non-trivial issue lies in handling additive attacks that are zero
modulo 2k, but not modulo 2k+s, as these do not affect correctness but may
lead to selective failure attacks, in which an abort signal can be generated
depending on the inputs from honest parties. Our protocol deals with this
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potential attack by using secret coefficients for the random linear combination
taken in the verification step. If we take public coefficients, as done in [45], the
following attack can be carried out.

Assume that the adversary has attacked exactly one gate, indexed by i0, in
the following way. When multiplying xi0 with yi0 , the adversary acted honestly,
but when multiplying r · xi0 with yi0 , it added the value di0 . Thus, on the
output wire, the parties hold a sharing of the pair (xi0 · yi0 , r · xi0 · yi0 + di0).
Now, assume that this wire enters another multiplication gate, indexed by j0
with input shares on the second wire being (wj0 , r · wj0) and that the output
of this second gate is an output wire of the circuit. Thus, on the output of
this gate, the parties will hold the sharing (xi0 · yi0 · wj0 , (r · xi0 · yi0 + di0)wj0)
(assuming the adversary does not attack this gate as well). In this case, we have
that T = αi0 · di0 + αj0 · (di0 · wj0) = di0(αi0 + αj0 · wj0). Now, if di0 = 2k+s−1

then it follows that T ≡k+s 0 if and only if αi0 + αj0 · wj0 is even.
The attack presented above does not change the k lower bits of the values

on the wires, and thus has no effect on the correctness of the output. However,
if αi0 and αj0 are public and known to the adversary, then by FCheckZero’s
ouptut the adversary may be able to learn whether wj0 is even or not. In
contrast, when αi0 and αj0 are kept secret, learning whether αi0 + αj0 · wj0 is
even or odd does not reveal any information about wj0 since it is now perfectly
masked by αi0 and αj0 . Therefore, to prevent this type of attack, we are
forced to use random secrets for our random linear combination. Here is where
the functionality FDotProduct becomes handy, as it allows to compute the sum
of products of sharings in an efficient way which is exactly what we need to
compute

∑N
i=1JαiK · JziK.

We state the security of our protocol below. A full simulation-based proof
appears in the full version of this work.

Theorem 1. Let f be an n-party functionality over Z2k and let s be a sta-
tistical security parameter. Then, Protocol 2 securely computes f with abort
in the (FInput,FMult,FCoin,FRand,FCheckZero)-hybrid model with statistical error
2−s+log(s+1), in the presence of a malicious adversary controlling t < n

2 parties.

Concrete efficiency

We now analyze the performance of the protocol. Recall that M is the number
of inputs and N is the number of multiplication gates in the circuit. We denote
by O the number of output wires of the circuit, and for a given functionality
F∗(`), we denote by C∗(`) the communication cost (in bits) of calling this
primitive.

For each input wire, we have one call to FInput(k + s), which is translated
into one call to FRand(k + s), one call to open(JrKk+s, i) and one element
in Z2k+s that is sent by some party Pi to the other parties. In addition,
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there is one call to FMult(k + s) to randomize each input. This adds up to
M · (2 · Crand(k + s) + Copen(i)(k + s) + (k + s)).

For each multiplication gate, we call FMult(k + s) twice. Then, in the
verification step, FRand(k + s) is called for each input wire and multiplication
gate. This adds N · (Crand + 2 · Cmult(k + s)). The remaining of the verification
step consists of two calls to FDotProduct(k + s), one call to open(JrKk+s) and
one call to FCheckZero(k + s). Recall that we assume that the protocol realizing
FDotProduct(k + s) has the same communication complexity as FMult(k + s), so
this adds up to 2 · Cmult(k+ s) + Copen(i)(k+ s) + CCheckZero(k+ s). However, as
these are small constants which do not depend on the size of the circuit, we
exclude them from the final count. In the output reconstruction step, for each
output wire, there is one call to open(JvKk, i).

We thus have that the cost of the protocol is

M ·
(
2 · Crand(k + s) + Cmult(k + s) + Copen(i)(k + s) + (k + s)

)
+N · (Crand(k + s) + 2 · Cmult(k + s)) +O · Copen(i)(k).

For circuits where N �M,O (i.e., there are much more multiplication gates
than input and output wires), this is translated toN ·(Crand(k+s)+2·Cmult(k+s)).
Notice that for some instantiations, like the replicated secret sharing based one
from Appendix 5.7, FRand is “for free” in the sense that it can be implemented
efficiently by relying on a computational assumption, e.g., PRGs with correlated
keys.

3.5 Instantiation for n parties

In this section, we present our instantiation based on Shamir’s secret sharing
over rings, using the techniques from [5]. This technique works for any number
of parties, although for 3 parties one can obtain more efficient solutions, such
as the one we describe in Appendix 5.7 that uses replicated secret sharing.
Over finite fields, Shamir’s scheme requires a distinct evaluation point for
each player, and one more for the secret. This is usually not a problem if
the size of the field is not too small. However, over commutative rings R
the condition on the sequence of evaluation points α0, . . . , αn ∈ R is that the
pairwise difference αi − αj is invertible for each pair of indices i 6= j. For our
ring of interest Z2` , the largest such sequence the ring admits is only of length
2 (e.g. (α0, α1) = (0, 1)).

The solution from [5] is to embed inputs from Z2` into a large enough
Galois ring R that has Z2` as a subring. This ring is of the form R =
Z2` [X]/(h(X)), where h(X) is a monic polynomial of degree d = dlog2 ne
such that h(X) mod 2 ∈ F2[X] is irreducible. Elements of R thus correspond
uniquely to polynomials with coefficients in Z2` that are of degree at most d−1.
Note the similarity between the Galois ring and finite field extensions of F2:
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elements of the finite field F2d correspond uniquely to polynomials of at most
degree d− 1 with coefficients in F2.

There is a ring homomorphism π : R → Z2` that sends a0 + a1X + · · ·+
ad−1X

d−1 ∈ R to the free coefficient a0, which we shall use later on.2 For more
relevant structural properties of Galois rings, see [5].

We adopt the above-mentioned version of Shamir’s scheme over R, but
restrict the secret space to Z2` . The share space will be equal to R. Let
1 ≤ τ ≤ n be the privacy parameter of the scheme. Then, the set of correct
share vectors is

Cτ =

{
(f(α1), . . . , f(αn)) ∈ Rn

∣∣∣∣ f ∈ R[X], deg(f) ≤ τ,
and f(α0) ∈ Z2` ⊂ R

}
. (3.1)

With the restriction that the secret is in Z2` , we have that Cτ is an Z2`-module,
i.e. the secret-sharing scheme is Z2`-linear. Since it is based on polynomial
interpolation, the properties from 3.2 can be easily seen to hold. This includes
division by 2 if all the shares are even.

In this section, we denote a sharing under Cτ as JxKτ = (x1, . . . , xn). We
call τ the degree of the sharing. The reason we are explicit about τ is that we
will use sharings of two different degrees. This stems from the critical property
of this secret-sharing scheme that enables us to evaluate arithmetic circuits:
this secret-sharing scheme is multiplicative. This means there is a Z2`-linear
map Rn → Z2` that for sharings JxKτ , JyKτ sends (x1y1, . . . , xnyn) 7→ x · y.

Put differently, (x1y1, . . . , xnyn) ∈ C2τ is a degree-2τ sharing with secret
x · y. We denote it Jx · yK(2τ) = (x1y1, . . . , xnyn) — in particular note the
parenthesized subscript refers to the degree of the sharing, as opposed to the
modulus. Note that Ci ⊆ Cj for 0 < i < j; in particular every degree-2τ
sharing is also a sharing of degree n− 1. A sharing of degree n− 1 is related to
additive secret sharing, where the secret equals the sum of the shares x =

∑
i xi.

The difference is that here there are constants, i.e. we may write x =
∑

i λixi,
for λ1, . . . , λn ∈ R. We shall make use of this in our multiplication protocol,
ensuring that parties only need to communicate an element of Z2` instead of
an element of R. However, note that J·K(2τ) does not meet the definition of
a secret-sharing scheme in Section 3.2, in particular because the corrupted
parties shares are not well defined and cannot be computed from the honest
parties’ shares.

Generating Randomness

We efficiently realize FRand by letting each player Pi sample and secret-share
a random element si, and then multiplying the resulting vector of n random

2Technically, an element of R is a residue class modulo the ideal (h(X)), but we omit
this for simplicity of notation.
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elements with a particular3 Vandermonde matrix [58].4 Of the resulting vector,
τ entries are discarded to ensure the adversary has zero information about the
remaining ones. Thus, n− τ random elements are outputted, resulting in an
amortized communication cost of O(n) ring elements per element. A priori the
adversary can cause the sharings to be incorrect; this is remedied with Protocol
4 by opening a random linear combination of the sharings and verifying the
result.

Since our secret-sharing scheme J·Kτ is Z2`-linear, we would like to choose
our matrix with entries in Z2` . Unfortunately, the Vandermonde matrix we
need does not exist over Z2` , for the same reason secret sharing does not work.
However, the secret-sharing scheme which consists of d parallel sharings of
J·Kτ be interpreted as an R-linear secret-sharing scheme [5, 37]. This secret-
sharing scheme, which we denote as 〈·〉, has share space Sd (since the scheme
is identical to sharing d independent secrets in S in parallel using J·Kτ ), and
secret space Rd. The scheme is R-linear because the module of share vectors,
which is (Cτ )

d, is an R-module via the tensor product (Cτ )
d ∼= Cτ ⊗S Sd ∼=

Cτ ⊗S R. In practice, a single secret-shared element 〈x〉 may be interpreted
as a secret-shared column vector (Jx1Kτ , . . . , JxdKτ )T . To compute the action
of an element r ∈ R on 〈x〉 in this representation, we first need to fix a basis
of R over S. Recall R = Z2` [X]/(h(X)), so we may pick the canonical basis
1, X, . . . ,Xd−1 ∈ R. This allows us to represent an element a ∈ R as a column
vector (a0, . . . , ad−1)T ∈ Sd, i.e. explicitly: a = a0 + a1X + · · · + ad−1X

d−1.
Multiplication by r ∈ R is an S-linear map of vectors Sd → Sd, i.e. it can be
represented as a d× d matrix Mr with entries in S. The product r〈x〉 = 〈rx〉
is then equal to Mr(Jx1Kτ , . . . , JxdKτ )T . If a single party P has a vector of
shares (s1, . . . , sd) ∈ R for 〈x〉 = (Jx1Kτ , . . . , JxdKτ )T , then Mr(s1, . . . , sd)

T is
their vector of shares corresponding to 〈rx〉.

In our protocol, the parties compute (〈r1〉, . . . , 〈rn−τ 〉)T = A(〈s1〉, . . . , 〈sn〉)T ,
where A has entries in R. This can be computed by writing out the R-linear com-
binations 〈ri〉 =

∑n
k=1 aik〈sk〉 =

∑n
k=1Maik〈sk〉, with 〈sk〉 = (Jsk1Kτ , JskdKτ )ᵀ.

Fix a sequence β1, . . . , βn ∈ R such that for each pair of indices i 6= j we have
that βi − βj is invertible.5 We let A be the (n− τ)× n matrix such that the
j-th column is (1, βj , β

2
j , . . . , β

n−τ−1
j )T . This matrix is hyperinvertible, i.e. any

square submatrix is invertible [5].

3Over fields this can be a general Vandermonde matrix, but this is not sufficient over R.
4In general, any R-linear code with good distance and dimension suffices to get O(n)

complexity in the protocol, but the Vandermonde construction is optimal.
5We may just use (β1, . . . , βn) = (α1, . . . , αn).
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Protocol 3 Generating random sharings of J·Kτ

1. Each party Pi samples an element si ← (Z2`)
d and secret-shares it

as 〈si〉 among all parties.

2. The parties locally compute the linear matrix-vector product to obtain
(〈r1〉, . . . , 〈rn−τ 〉)T := A(〈s1〉, . . . , 〈sn〉)T .

3. The parties execute Protocol 4 dκ/de times in parallel on
〈r1〉, . . . , 〈rn−τ 〉If any execution fails, they abort. Otherwise, for
each j = 1, . . . , n − τ they interpret 〈rj〉 = (Jrj1Kτ , . . . , JrjdKτ ) and
output Jr11Kτ , . . . , Jr1dKτ , Jr21Kτ , . . . , Jr(n−τ)dKτ .

Lemma 2. Protocol 3 securely computes (n− τ)d parallel invocations of FRand

for J·Kτ with statistical error of at most 2−κ in the presence of a malicious
adversary controlling t < n/2 parties.

The proof is in Appendix 5.7

Checking Correctness of Sharings

We check whether sharings are correct by taking a random linear combination
of the sharings, masking it with a random sharing, and opening the result to
all parties.

This protocol does not securely compute an ideal functionality, because
privacy is not preserved if the sharings are incorrect. The way we use it this does
not matter, since we only verify correctness of sharings of random elements.

Protocol 4 Checking correctness of sharings of 〈·〉

Input: possibly incorrect sharings 〈x1〉, . . . , 〈xN 〉, and a possibly incorrect
sharing 〈r〉 ← (Z2`)

d of a random element.

1. The parties call FCoin N times to get a1, . . . , aN ← (Z2`)
d.

2. The parties compute 〈u〉 := a1〈x1〉+ · · ·+ aN 〈xN 〉+ 〈r〉.

3. The parties run open(〈u〉). If it returns ⊥, output ⊥. Else, output
correct.

Lemma 3. If at least one of the input sharings 〈x1〉, . . . , 〈xN 〉 is incorrect,
Protocol 4 outputs correct with probability at most 1

2d
.
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To show correctness, we use the following consequence from [5, Lemma 3].

Lemma 4. Let C ⊆ Rn be a free R-module. Then for all x /∈ C and u ∈ Rn,
we have that

Pr
r←R

[rx+ u ∈ C] ≤ 1

2d

where r is chosen uniformly at random from R.

Proof of Lemma 3. Let C denote the R-module of correct share vectors (such
as in (3.1)). One of the input sharings is incorrect; without loss of generality
assume it is 〈x1〉. The protocol open(〈u〉) returns a value not equal to ⊥ if and
only if 〈u〉 = a1〈x1〉+ (a2〈x2〉+ · · ·+ an〈xn〉+ 〈r〉) is in C. By Lemma 4 this
probability is bounded by 1/2, since a1 was chosen uniformly at random. Since
〈u〉 is masked with 〈r〉, the protocol is private.

Secure Multiplication up to Additive Attacks

Multiplication follows the outline of the passively secure protocol of [58]. The
protocol begins with an offline phase, where random double sharings are pro-
duced, i.e. a pair of sharings (JrKτ , JrK(2τ)) of the same uniformly random
element r shared using polynomials of degree τ and degree 2τ , respectively.

We denote a double sharing as JrK(τ,2τ) := ((r1, r
′
1), . . . , (rn, r

′
n)). It is a

Z2`-linear secret-sharing scheme with secret space Z2` and share space R⊕R.
The set of correct share vectors is the Z2`-module((f(α1), g(α1)), . . . , (f(αn), g(αn)))

∣∣∣∣∣∣
f, g ∈ R[X],

f(α0) = g(α0) ∈ Z2` ,
deg(f) ≤ τ, deg(g) ≤ 2τ

 .

Secret-sharing an element r under J·K(τ,2τ) involves selecting two uniformly
random polynomials of degrees at most τ and 2τ respectively.

To generate sharings in J·K(τ,2τ), we essentially use Protocol 3. However,
this protocol does not securely realize FRand, since in Lemma 2 we use the fact
that the simulator can compute the corrupted parties’ shares from the honest
parties’ shares, which is not the case for the degree-2τ part (hence why J·K(2τ),
therefore also J·K(τ,2τ), does not meet the definition of a secret-sharing scheme
in Section 3.2). This will only lead to an additive attack in the online phase,
which is why we can still use the protocol.

Protocol 5 Secure multiplication up to an additive attack

Inputs: Parties hold correct sharings JxKτ , JyKτ

Offline phase: The parties execute Protocol 3 for J·K(τ,2τ) instead of J·Kτ .
They only check correctness for the J·Kτ part, and not for the J·K(2τ) part.
They obtain a random double sharing (JrKτ , JrK(2τ)).
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Online phase:

1. The parties locally calculate JδK(2τ) := JxKτ · JyKτ − JrK(2τ).

2. Each Pi for i = 1, . . . 2τ + 1 sends ui := π(λiδi) to P1 (recall π(a0 +
a1X + · · · + ad−1X

d−1) = a0 ∈ Z2` , and the λi are constants such
that

∑n
i=1 λiδi = δ)

3. P1 can now reconstruct δ as δ =
∑n

i=1 ui.

4. P1 broadcasts δ.

5. The parties locally compute Jx · yKτ = JrKτ + δ.

The reason each party sends ui instead of δi to P1 is two-fold. It saves
bandwidth, since only an element of Z2` needs to be communicated instead
of an element of R. More importantly though, if the inputs JxKτ , JyKτ are not
guaranteed to be correct, then sending full shares δi can compromise privacy.

Note that it is important that the random double sharing JrK(τ,2τ) is guar-
anteed to be correct. I.e., the shares are degree τ and 2τ respectively.

Lemma 5. Protocol 5 securely computes FMult with statistical error ≤ 2−κ in
the FRand-hybrid model in the presence of a malicious adversary controlling
t < n/2 parties.

The proof appears in Section 5.7.
When evaluating a circuit gate-by-gate using Protocol 5, we consider an

optimization in which we do not need to execute the broadcast (which might
be expensive) for each multiplication, but instead they will perform a broadcast
just before opening the values. In the multiplication protocol, P1 will just send
a value (not guaranteed to be the same) to all other parties. Each party Pi
keeps track of a hash value hi of all received values in step 4 of the protocol
far. Before opening their outputs, each party Pi sends its hash hi to all other
parties. If any party detects a mismatch, they abort. Note that security up
to additive attack is guaranteed only after this procedure succeeds, which is
executed before opening the output.

In doing so, we lose the invariant that all secret-shared values are guaranteed
to be correct. In other scenarios, as for example the t < n/3 setting, this
completely breaks the security of the protocol as shown in [87]. However, this
is not a problem in our case since the degree-2τ sharings have no redundancy
in them. As shown in [87], this is enough to guarantee the security of the
protocol with the deferred check, and the reason is essentially that the shares
that the potentially corrupt party P1 receives are now uniformly random and
independent of each other.
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3.6 Implementation and Evaluation

We report in the following section on an implementation of both the Shamir
based instantiation, as well as the 3-party instantiation based on replicated
secret-sharing.

Implementation Details

We implement both protocols in C++ and rely on uint64_t and unsigned
int1286 types for arithmetic over Z2` , where the former is used when ` = 64
and the latter when ` = 128. Notice that this choice allows us to investigate
two sets of parameters: ` = 64 can be viewed as 32 bit computation with 32
bits of statistical security, while ` = 128 gives us 64 bits of computation with
64 bits of statistical security. We rely on libsodium for hashing and the PRG
we use is based on AES.

For the Galois-ring variant our implementation uses the ringR = Z2` [X]/(h(x))
with h(X) = X4 +X + 1 and denote this by GR(2`, d = 4). This ring supports
24 − 1 = 15 parties and the act of hard-coding the irreducible polynomial
allows us to implement multiplication and division in the ring using lookup
tables. It is worth remarking that operations in GR(2`, d) are more expensive
than certain prime fields (in particular, Mersenne primes as the ones used in
[45]). Concretely, a multiplication in GR(264, 4) require 20 uint64_t multipli-
cations and 18 additions, while a multiplication in Z264 require only a couple
of uint64_t multiplications as well as a few bitwise operations. so while some
MPC primitives in Z2` may be cheaper (for example, masking a value in Z2`

is cheaper), this gain in efficiency is greatly reduced by the complexity of
operating in the Galois-Ring.

Experimental setup. We run our experiments on AWS c5.9xlarge ma-
chines, which have 36 virtual cores, 72gb of memory and a 10Gpbs network.
We utilize 3 separate machines and so for experiments with n > 3, some parties
run on the same machine. However, the load on each machine is distributed
evenly (e.g., with 5 parties, the first two machines each run 2 parties each while
the last run only 1 party).

Experiments

Our experiments comprises two points of comparison:
First we compare our Shamir based instantiation (cf. Section 3.5) against

the field protocol of [45]. For this, we use the implementation at [4]. We
perform the same benchmarks as reported on in [45]; that is, circuits of varying
depth with a fixed number of parties. Each experiment is repeated for n set to

6This type is a GCC extension, cf. https://gcc.gnu.org/onlinedocs/gcc/_005f_
005fint128.html

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fint128.html
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fint128.html


3.6. IMPLEMENTATION AND EVALUATION 37

3, 5, 7 and 9. The main goal here is to understand the overhead of working
with GR(2`, d) as opposed to working over Zp. As [4] supports different choices
of the prime p we set p to be a 61-bit Mersenne prime, as this is the most
efficient field that also allows for a reasonable expressive computations.

Our second set of experiments will compare our replicated instantiation
(cf. Appendix 5.7) against the protocols for computation over rings presented
in [67]. In these experiments we measure the throughput of multiplications
in our protocol; that is, how many multiplications our protocol can compute
per second. Since we do not have access to the implementations of [67], we
opt instead to use the experimental setup as theirs, in order to obtain a fair
comparison. We report here on benchmarks run in a LAN setting.

While the protocol of [45] is the natural choice for comparing our n-party
instantiation, a number of efficient specialized 3 party protocols exist which
we briefly mention here. We choose the protocols of [67] for comparison as
their experiments and setup is straightforward to replicate with our protocol,
thus allowing us to make a fair comparison. Concurrently with [67], several
other proposals for 3 party protocols have been published, such as [41] or [124].
However, no public implementation exist for these works, and the nature of
the experiments they perform makes it very hard to perform a fair comparison
(as we do later with the results from [67]). More precisely, both [41] and [124]
evaluate their protocols relative to an implementation of ABY3 [117] that was
also implemented by the authors themselves (as no public implementation of
ABY3 was available at that time).

While [124] have better amortized communication cost, we estimate that
their concrete running time (when considering end-to-end times, as we do in
this work) will be worse. We base this conjecture on the fact that [124] uses the
interpolation based check from [30]. For the case of fields, this check was shown
in [32] to take several seconds in order to check 1 million multiplications (which
is the benchmark we use). Running the same check, but over a ring, requires
computation over a fairly large extension of Z2k , which we have no reason to
expect would be significantly faster than the field based check. Concluding,
we would not be surprised if [124] is faster in the online phase; however,
preprocessing the triples needed to get this would be much slower than our
protocol. We stress that our protocol (for the 3 party case) has no preprocessing,
so we expect our protocol to perform much better when measuring end-to-end
times. We elaborate a bit more on the cost of the kind of check used in [124]
later, when we discuss [32].

Results: Shamir instantiation

The results of our experiments can be seen in Table 3.1. Across the board, we
see that preprocessing is more expensive in our protocol than in [45]. However,
the overhead is in lines with the observation made above that operating in
GR(2`, d) is about 4 times as expensive than in Zp when ` = 64 and p is a
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61-bit Mersenne prime. This is in particular true when the number of parties
is small as here local computation is the dominant factor. Moving to a larger
number of parties, the overhead decreases, which we attribute to differences in
the efficiency of the communication layer between our protocol and the one in
[45].

Interestingly, we see for a lower number of parties but for very deep circuits,
that our protocol performs better in the online phase. E.g., [45] takes 7.3
seconds, while both of our version is below 4.5 seconds. One reason for this
could again be differences in the communication layer (since both our protocols
communicate roughly the same amount of information due to the fact that we
only need to send a Z2` element during reconstruction). However, our protocol
is again less efficient when the number of parties increase, which would be due
to the fact that the king needs to send more data during reconstruction, as
well as the increased cost of the broadcast when more parties are involved. We
remark that it is possible to distribute the broadcast load of the king among
several parties, which may close the gap to some extent.

Finally, we see an expected overhead of roughly ×2 between ` = 64 and
` = 128 (consider the depth 20 row in Table 3.1, as this is the setting where
differences in local computation is most prominent). This more or less confirms
the intuition that an operation in Z2128 is around 2-3 times as expensive
compared to an operation in Z264 .7

Depth Protocol 3 5 7 9

20
Ours ` = 64 1.56 / 0.18 2.12 / 0.28 2.46 / 0.37 2.70 / 0.47
Ours ` = 128 2.79 / 0.52 4.28 / 0.74 4.73 / 0.91 5.10 / 1.11

[45] 0.43 / 0.18 0.63 / 0.22 0.93 / 0.45 1.03 / 0.28

100
Ours ` = 64 1.50 / 0.23 1.97 / 0.30 2.30 / 0.37 2.76 / 0.41
Ours ` = 128 2.80 / 0.51 3.78 / 0.61 4.15 / 0.77 5.02 / 0.95

[45] 0.42 / 0.42 0.64 / 0.22 0.90 / 0.52 1.04 / 1.27

1, 000
Ours ` = 64 1.58 / 0.67 1.95 / 1.08 2.23 / 1.43 2.62 / 1.84
Ours ` = 128 2.80 / 1.23 3.68 / 1.81 4.23 / 2.08 5.03 / 2.47

[45] 0.41 / 0.96 0.63 / 0.68 0.89 / 0.95 1.05 / 1.17

10, 000
Ours ` = 64 1.50 / 3.85 2.01 / 8.55 2.41 / 13.41 2.65 / 16.76
Ours ` = 128 2.81 / 4.43 3.71 / 8.07 4.38 / 13.31 5.03 / 16.43

[45] 0.38 / 7.30 0.61 / 7.32 0.89 / 8.40 1.05 / 12.88

Table 3.1: LAN running times in seconds for circuits with 106 multiplications,
different depth and for varying number of parties, evaluated using Shamir
SS-based MPC. Each value is a tuple a/b where a is the preprocessing time
(which is dominated by the double-share generation) and b is the time it takes
to evaluate the circuit.

7Indeed, while a multiplication in Z264 is one unsigned 64-bit multiplication, a multipli-
cation on 128-bit types compile to three Z264 multiplications. That the overhead is less than
3x can be attributed to the compiler being able to easier vectorize 64-bit multiplications in
the Z2128 case.
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Figure 3.1: LAN throughput for replicated secret-sharing with 3 parties.

Comparing our instantiation with [45]. It is worth remarking that, for
more elaborate protocols such as bit decompositions or truncations, operating
over a prime field requires additional space for masking. For example, if we
require 40 bits of security for masking, the 61-bit Mersenne prime only leaves
room for ≈ 21 bits of computation. For these applications therefor, it is more
reasonable to compare the numbers for [45] in Table 3.1 with our protocol with
` = 64 (since Z2k does not require this extra space, ` = 64 gives us 24 bits of
computation at 40 bits of security). Alternatively, one could move to a 89-bit
Mersenne or 127-bit Mersenne prime (allowing 49 and 87 bits of computation
with 40 bits of security); however efficient multiplication in these fields require
multiplication of essentially 128-bit integers without overflow, bringing it closer
to operating in GR(2128, d).

Results: Replicated instantiation

We also compare our replicated instantiation with the protocols of [67], results
of which can be seen in Figure 3.1 and Figure 3.2.8 As we do not have access
to the code of all the protocols considered in [67], we run our protocol in the
same setup. With the exception of the Sharemind postprocessing protocol, we
observe that we outperform all protocols of [67]. We may attribute this to the
fact that both Sharemind and MP-SPDZ are more mature codebases and thus
it is likely that a greater effort has been put into optimizations.

8We thank the authors of [67] for giving us the tikz code of their graph.
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Figure 3.2: WAN throughput for replicated secret-sharing with 3 parties.

However, when we consider our protocol running in a WAN, we see that we
outperform all protocols in [67]. This concurs with the fact that our protocol
only needs to send 2 ring elements per multiplication, while the postprocessing
protocols of [67] needs to send 3.



Chapter 4

Secure Inference of Quantized
Neural Networks

Anders Dalskov†, Daniel Escudero†, Marcel Keller‡

† Aarhus University, Denmark
‡ CSIRO’s Data61, Australia

Abstract. Image classification using Deep Neural Networks that pre-
serve the privacy of both the input image and the model being used, has
received considerable attention in the last couple of years. Recent work
in this area have shown that it is possible to perform image classification
with realistically sized networks using e.g., Garbled Circuits (XONN,
USENIX ’19) or MPC (CrypTFlow, Eprint ’19). These, and other prior
work, however, require models to be either trained in a specific way or
postprocessed in order to be evaluated securely.

We contribute to this line of research by showing that this postpro-
cessing can be handled by standard Machine Learning frameworks. More
precisely, we show that quantization as present in Tensorflow and other
frameworks suffices to obtain models that can be evaluated directly and
as-is in standard off-the-shelve MPC. We implement secure inference of
these quantized models in MP-SPDZ, and the generality of our technique
means we can demonstrate benchmarks for a wide variety of threat mod-
els, something that has not been done before. In particular, we provide
a comprehensive comparison between running secure inference of large
ImageNet models with active and passive security, as well as honest and
dishonest majority. The most efficient inference can be performed using
a passive honest majority protocol which takes between 0.18 and 13.1
seconds, depending on the size of the model; for active security and an
honest majority, inference is possible between 5.3 and 96.2 seconds.
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4.1 Introduction

Machine Learning (ML) models are becoming more relevant in our day-to-day
lives due to their ability to perform predictions on several types of data. Neural
Networks (NNs), and in particular Convolutional Neural Networks (CNNs),
have emerged as a promising solution for many real-life problems such as facial
recognition [110], image and video analysis for self-driving cars [29] and even
for playing games (most readers probably know of AlphaGo [137] which in 2016
beat one of the top Go players). CNNs have also found applications within
areas of medicine. [68], for example, demonstrates that CNNs are as effective
as experts at detecting skin cancers from images, and [66] investigated using
CNNs to examine chest x-rays.

Many applications that use Machine Learning to infer something about a
piece of data, does so on data of sensitive nature, such as in the two examples
cited above. In such cases the ideal would be to allow the input data to remain
private. Conversely, and since model training is by far the most expensive part
of deploying a model in practice,1 preserving model privacy may be desirable
as well.

In order to break this apparent contradiction (performing computation on
data that is ought to be kept secret) tools like secure multiparty computation
(MPC) can be used. Using such tools, image classification can be performed
so that it discloses neither the image to the model owner, nor the model to
the input owner. In the client-server model this is achieved by letting the data
owner and the model owner secret-share their input towards a set of servers,
who then run the computation over these shares.

Towards Deploying Secure Inference.

Research in the area of secure evaluation of CNNs has been rich during the
last couple of years [80, 100, 109, 112, 118, 130–132, 142]. The main goal of
this prior research has been to reduce the performance gap between evaluating
a CNN in the clear and doing it securely. Current state of the art solutions
rely on for example Garbled Circuits [131] or MPC [109]. Both of these works
manage to evaluate large ImageNet type models (tens of layers and 1000 classes)
with reasonable efficiency. Moreover, the CrypTFlow framework [109] also
support secure inference with malicious security albeit by relying on a secure
hardware assumption. Several solutions have also been developed by researchers
closer to the industry side, such as TF-Encrypted [52] or CrypTen [70], which
suggests that secure prediction has value beyond the academic point of view—an
important factor for accelerating wide adoption of these techniques.

1The network by Yang et al. [144] costs between $61 000 and
$250 000 to train according to https://syncedreview.com/2019/06/27/
the-staggering-cost-of-training-sota-ai-models/.

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/
https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/
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These advances mean that secure evaluation of large models (tens of layers,
millions of parameters) can now be performed in the order of seconds which,
while too slow for real-time classification, is acceptable for many privacy critical
tasks like the ones described in [66, 68]. Medical tests typically take hours if
not days or weeks, so running an additional test that takes a few seconds or
minutes will not matter.

Given the intense interest in secure inference in recent years, one might ask:
what obstacles are preventing the use of secure inference in practice?. Most of
the focus on the research literature has been on improving performance, but
this is far from being the only challenge in this direction.

Challenges, the ML perspective. Setting aside the privacy requirement
for a minute, deploying a Machine Learning solution in practice is already a
long and strenuous process. Data has to be acquired and then processed; a
model has to be designed, its parameters have to be tuned and finally the
model needs to be trained. Moreover, the process is often repeated totally or
in parts whenever new data is acquired or a better model design is found.

It is not surprising that a significant amount of effort is being spent on
designing feature-rich and well documented frameworks for developing these
models, for training them and for testing them. Frameworks such as TensorFlow
[69], PyTorch [123] and MXNet [44] are all seeing significant use and are being
actively developed by major companies (Google for TensorFlow, Facebook for
PyTorch and Apache for MXNet).

Ideally, it should be possible to design a model using these widely used
frameworks and then simply alter the way it is used at the very end when
the model is used to perform predictions on user provided inputs. However,
most existing solutions for secure inference throws a wrench into this process
as they rely either on models that use specialized activation functions, such as
CryptoNets [80] or require a specialized training process, such as XONN [131].
For these reasons, a part that is often of the least concern when developing a
Machine Learning solution (using the final model for prediction) thus becomes
an aspect that has to be considered at virtually all steps of the design process.

It is worth noting here that it is not enough for a framework to simply
support conversion from a trained model into a representation that can be
used. Such conversions typically involve steps like moving from a floating
point representation to a fixed point one, or exchanging certain activation
functions with “approximations”—all of which impact accuracy and thus the
expressiveness of the model.

These issues were also identified by the authors of CrypTFlow [109] and a
third of their work is spent detailing a customized application that converts
TensorFlow code into a representation which can be run securely by their
framework, without substantially compromising on accuracy.

Our work takes a different approach to this problem. Namely, we investigate
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whether, and to what extent, existing frameworks such as TensorFlow support
training and designing models that can be securely evaluated.

Challenges, the MPC perspective. In spite of notable progress in general-
purpose MPC, most of the existing MPC-based secure inference works rely on
customized subprotocols that are highly optimized for particular activation
functions. Moreover, and as remarked on above, these activation functions are
often themselves novel in the sense that they rarely see use outside of secure
inference.

Such a tight coupling between what can be evaluated and how its evaluated
also implies that often only a single threat model is supported. In particular, if
a specific threat model is desired, then often this directly determines what kind
of network that can be run. For example, if one requires a dishonest majority
solution, such as a 2-party protocol, then XONN is the current most efficient
solution. But XONN only works on binarized networks and only works with
Sign as the activation function.

At the other end, if one is fine with honest majority (typically 3 parties,
as that is the most efficient setting) but require active security, then only
CrypTFlow fits the bill; but CrypTFlow relies on secure hardware for active
security.

Ideally, the MPC that is used should be “oblivious” to the network being
evaluated, as that would allow a user to more freely choose which threat model is
best suited for them without having to think about the structure of the network,
or specialized hardware. This is the approach we take. That is, we investigate
how applicable general purpose MPC frameworks such as MP-SPDZ [103] or
SCALE-MAMBA [7] are to evaluate Convolutional Neural Networks.

Using general-purpose MPC frameworks is not only convenient when it
comes to the threat model. Another important factor is that, given their
flexibility, this type of protocols tend to receive more scrutiny from part of the
community [91], they are much better understood from a practical point of
view and they have more reference implementations.2 These considerations
are important for an area like MPC, which is today in a stage in which many
applications are within the practical realm, but no standardization of imple-
mentation practices (like the ones found e.g. in symmetric-key cryptography)
are set yet.

2Although MPC protocols, general-purpose or not, are accompanied with security proofs,
this does not mean that their “level of security” is the same. Details that appear only
at implementation time, like instantiations of random oracles, make it important to have
an end-to-end understanding of the security. Having reference implementations that are
as close to industry-grade as possible is important, and the panorama in this regard for
general-purpose protocols is much more promising than for special-purpose MPC.
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Our Contribution

Our work addresses the challenges identified in the previous section, and to
this end it focuses on the following two questions that, while simple in nature,
have so far not been treated in research on secure inference.

1. To what extent can “MPC friendly” models be obtained from existing
frameworks such as TensorFlow or PyTorch, without requiring a cus-
tomized conversion protocol? More precisely, is it possible to design a
model using these standard frameworks, which can then be efficiently
evaluated by a secure protocol, without at all tampering with the model?

2. To what extent does existing MPC frameworks support running models
“out-of-the-box”? That is, can we securely evaluate Machine Learning
models (of the kind described above) using general-purpose MPC frame-
works?

These questions provide a minimal baseline that one should keep in mind
before moving on to specialized protocols or resorting to specialized models
that improve efficiency. In this work we explore these questions thoroughly,
which results in the following contributions:

Quantization. We identify the quantization techniques used in both Tensor-
Flow, PyTorch and MXNet and described in [99] as particularly well
suited for MPC. This type of quantization results in models for which
each output of each convolutional layer can be expressed as a single
dot-product followed by a truncation.

MPC. We describe how to implement these types models in a black-box way;
that is, without resorting to special properties of the underlying MPC.

Optimizations. In settings where dot-products can be securely computed
with high efficiency, the main bottleneck is truncation (or bitwise right-
shift). As optimizations, we therefore present an optimized truncation
protocol for some threat models which further improves efficiency.

Experiments. Finally, we evaluate the efficiency of a large class of quantized
models in a variety of different threat models. More precisely, we evaluate
16 different models of varying size, each in 16 different settings.

We elaborate on each contribution below.
First, the fact that we identify a widely used quantization scheme as being

particularly well suited for secure inference, provides a very promising area
of study for both researchers and practitioners. For researchers, it provides
a fixed target for secure protocol design. For practitioners, it shows that one
does not have to abandon widely used Machine Learning frameworks in order
to design models for practical use that can evaluated securely.
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Secondly, showing that these techniques are compatible with the arithmetic
black-box model (that is, only secure additions and multiplications are required)
allows us to lower the requirements that an MPC protocol should satisfy in
order to be suitable for secure inference. This in effect allows us to extend
the amount of protocols supported. However, this does not mean that these
protocols cannot be optimized, which in fact takes us to our third contribution:
We present optimized primitives for the case of truncation over the ring Z2k ,
which is not as well studied as the correponding problem over fields and
constitutes the main bottleneck when securely evaluating our quantized neural
networks.

Finally, to illustrate the advantages of our approach with respect to con-
structing ad-hoc MPC protocols that are only suitable to certain type of models,
we perform a large amount of experiments with a wider range of models and
different MPC protocols. More precisely, we securely evaluate 16 models that
are part of the ImageNet family3 using MPC protocols that vary with respect
to several dimensions: Corruption threshold (honest vs. dishonest majority),
corruption model (passive vs. active security) algebraic structure (integers
modulo 2k or modulo prime p) and whether or not truncation is exact or
probabilistic.

Our experiments let us conclude several things:

1. Corruption threshold has a very large impact on efficiency for general-
purpose MPC. Indeed, a dishonest majority evaluation takes orders of
magnitude longer than honest majority.

2. On the other hand, corruption model has a comparatively smaller impact
on efficiency. For example, an actively secure evaluation with an honest
majority protocol over a prime field is only about 4 times slower than if
the evaluation was done with the corresponding passive protocol.

3. For passive protocols we find that modulo a power of 2 is between 4 and
10 as efficient as the corresponding protocol modulo a prime power. This
result further supports all the recent work that has gone into designing
fast protocols that work over a ring [51, 62] (as this ring is typically taken
to be integers modulo a power of 2).

4. Finally, by running our experiments for both exact truncation (meaning we
evaluate the model exactly as would be done in the clear) and probabilistic
truncation (meaning the evaluation may suffer some unknown loss in
accuracy) we can quantify the exact gain in efficiency by relying on
specialized protocols.

3The choice of evaluating these models is only because of convenience, as they can be
found as part of the Tensorflow Lite model repository. As discussed in Section 5.7, any
model trained with Tensorflow can be evaluated using our framework without the need of
introducing extra tools.
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Related Work

The following review is focused the different types of quantization (if any) that
prior works has used; additionally, we look at frameworks for secure inference
that prior works have developed. A broader review can be found in Appendix
5.7.

Quantization in prior work

Whether implicitly or explicitly, most prior work already uses some form of
quantization. For instance, replacing floating-point by fixed-point numbers
can be seen as a form of quantization. More often than not, however, this
conversion is done in a very naive manner where the primary goal has been to
fit the model parameters to the secure framework without further consideration
about any potential impact it might have on the model’s accuracy. Relatively
little work has made explicit use of quantization in the context of securely
evaluating Machine Learning models. One example is the recent work by Bourse
et al. [31], where the authors use a quantization technique that is similar to the
one described by Courbariaux and Bengio [47]. Sanyal et al. [133] use the same
techniques. Nevertheless, their work lies in the FHE domain, which differs from
multiparty computation. For instance, the fact that the weights are kept in
the clear by the model owner changes the way the computation is performed,
and allows them to use only additions and subtractions. XONN [131], which is
based on Garbled Circuits, uses a quantization scheme which converts weights
into bits [96]. For this to work, the authors need to increase the number of
neurons of the network and a large part of their work is dedicated to describing
how this scaling can be performed. CrypTFlow [109] employ what can be seen
as a custom fixed-point-to-floating-point conversion protocol (called Athos)
that automatically converts the floating point weights of a Tensorflow model
into a fixed points representation, where the parameters are chosen so as to
not compromise on the models original accuracy.

Frameworks for secure evaluation

Several previous works provide what can be viewed as a more complete frame-
work for secure evaluation. The first of these is MiniONN [112] which provides
techniques for converting existing models into models that can be evaluated
securely. The authors demonstrate this framework by converting and running
several models for interesting problem domains, such as Language modeling, as
well as more standard problems such as hand writing recognition (MNIST) and
image recognition (CIFAR10). CrypTFlow [109] also provides more complete
framework. As already mentioned above, the first step in their framework is
a protocol for converting an Tensorflow trained model into a model that can
later be evaluated securely using a protocol based on SecureNN [142]
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Outline of the Document

In Section 4.2 we give a brief introduction to Neural Networks after which we
describe the quantization scheme we will be using. In Section 4.3 we provide
a self-contained description of our protocol for secure inference, describing
the basic building blocks. We discuss implementation details and present
benchmarks in Section 5.7, and conclude in Section 4.5.

4.2 Deep Learning and Quantization

Deep learning models are at the core of many real-world tasks like computer
vision, natural language processing and speech recognition. However, in spite
of their high accuracy for many such tasks, their usage on devices like mobile
phones, which have tight resource constraints, becomes restricted by the large
amount of storage required to store the model and the high amount of energy
consumption when carrying out the computations that are typically done
over floating-point numbers. To this end, researchers in the machine learning
community have developed techniques that allow weights to be represented
by low-width integers instead of the usual 32-bit floating-point numbers, and
quantization is recognized to be the most effective such technique when the
storage/accuracy ratio is taken into account.

Quantization allows the representation of the weights and activations to
be as low as 8 bits, or even 1 bit in some cases [47, 128].This is a long-
standing research area, with initial works already dating back to the 1990s
[14, 72, 114, 139], and this extensive research body have enabled modern
quantized neural networks to have essentially the same accuracy as their full-
precision counterparts [48, 85, 90, 122, 147].

Notation

For a value x
¯
∈ RN1×N2×N3 we use x

¯
[i, j, c] ∈ R to denote taking i’th value

across the first dimension, the j’th value across the second dimension and
the c’th value across the last dimension. In a similar way, we might write
x
¯
[·, ·, c] ∈ RN1×N2 to denote the matrix obtained by fixing a specific value for

the last dimension. A real value interval is denoted by [a, b] and a discrete
interval by [a, b]Z. We define clamping of a value x ∈ R to the interval [a, b],
denoted by Clampa,b(x), by setting x← a if x < a, x← b if x > b and otherwise
x← x. (Clamping to a discrete interval is similarly defined.) We denote by N`
the set {1, . . . , `}.

Deep Learning

A Convolutional Neural Network (CNN) is an ordered series of non-linear
functions (f1, . . . , fn) where fi : Di−1 7→ Di is called a layer, and where each
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Di ∈ RN1×···×Nmn is a space of tensors. In practice, and for the networks we
consider (ImageNet networks) D0 ∈ R128×128×3 indicating that inputs are 128
by 128 pixel RGB images, and Dn ∈ R1000 indicates that there is 1000 output
classes.

We are concerned mainly with the case where fi is a convolution, followed by
a Rectified Linear Unit (ReLU). More precisely, fi can be expressed as fi(x) =
max(xW + b, 0) where W and b are tensors (weights and bias, respectively),
and where max is applied entrywise.

Downsampling, i.e., making the height and width of the output of a layer
smaller, can be achieved by applying pooling operations. Average pooling, for
example, goes over windows of some size w × h in each channel of the input
and outputs the average; that is the output y

¯
[i, j, c] will be the average of a

w × h window centered around x
¯
[i, j, c], where x

¯
is the input tensor.

Finally, batch normalization [98] is often employed to speed up training.
The idea is to normalize the inputs to each activation: instead of computing
g(x) for input x and activation function g, we instead compute g(y) where

y = γ

 x− µB√
σ2
B + ε

+ β, (4.1)

where γ, β are parameters learned during training, and µB, σ2
B is the mean

and variance, respectively, of a batch B of which x is a member. Consider an
input y = xW + b to g. During inference, we can “fold” the batch normalization
parameters into the weights, which is done by using W ′ and b′ defined as

W ′ =
γW

σ
, b′ = γ

(
b− µ
σ

)
+ β.

It is straight forward to verify that using y′ = xW ′ + b′ yields the expression
in Eq. (4.1).

Quantization of [99]

The goal of this section is to provide an overview of the quantization technique of
Jacob et al. [99] (see also [108]) that we will be relying on to get efficient secure
inference. While this particular quantization scheme might not be state of the
art, or even the best for all choices of secure inference (e.g., XONN [131] relies
on a different scheme to get efficient inference) we choose this particular scheme
for the following reasons: It is implemented in Tensorflow (more precisely,
TFLite [86]) and as such we get a user friendly, widely available and well
documented way of training models that can be securely evaluated. The fact
that Tensorflow can be used to directly train models for our framework is very
handy indeed as it removes the need to develop custom tooling that has little
to do with the secure framework itself. Moreover, Tensorflow provides several
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pre-trained ImageNet models which provides a very good point of reference for
not only our benchmarks, but for future works that wish to compare against us.
Indeed, few if any previous work on secure inference provide pretrained models
which makes an accuracy oriented comparison very hard.4 Our focus here is
a particular quantization scheme; for a broader survey, we refer the reader to
Guo [89].

We note that this scheme is beneficial for MPC since it simplifies the
activations and the arithmetic needed to evaluate a CNN. However, the original
goal of Jacob et al. was to reduce the size of the models, rather than simplifying
the arithmetic or the activations. Unfortunately, we do not get the benefits in
the size reduction since, even if the network can be stored using 8-bit integers,
arithmetic must be done modulo 232 and even 264 in some cases.

Quantization and De-Quantization

The scheme comes in two variants, one for 8-bit integers and another one
for 16-bit integers. In this work we focus in the former, and we provide our
description only in that setting.

Let m ∈ R and z ∈ [0, 28)Z and consider the function Quant−1
m,z : [0, 28)Z →

R given by Quant−1
m,z(x) = m · (x− z). This function transforms the interval

[0, 28)Z injectively into the interval I = [−m · z,m · (28 − 1− z)) and as such it
admits and inverse Quantm,z mapping elements in the image of Quant−1

m.z into
[0, 28)Z. We define the quantization of a number α ∈ I to be Quantm,z(α

′),
where α′ is closest number to α such that α′ is in the image of Quant−1

m,z.
The constants m, z above are the parameters of the quantization, and are

known as the scale and the zero-point, respectively. This quantization method
will be applied on a per-tensor basis, i.e. each individual tensor α has a single
pair m, z associated to it. These parameters are determined at training time by
recording the ranges on which the entries of a given tensor lie, and computing
m, z such that the interval [−m · z,m · (28 − 1 − z)) is large enough to hold
these values. See Figure 4.1 for a visualization of this quantization method,
and see Jacob et al. [99] for details.

Dot Products

Computing dot products is a core arithmetic operation in any CNN. In this
section we discuss how to do this with the quantization method described
above.

Let α = (α1, . . . , αN ) and β = (β1, . . . , βN ) be two vectors of numbers with
quantization parameters (m1, z1) and (m2, z2), respectively. Let γ =

∑N
i=1 αi·βi,

and suppose that γ is part of a tensor whose quantization parameters are
(m3, z3). Let c = Quantm3,z3(γ), ai = Quantm1,z1(αi) and bi = Quantm2,z2(βi).

4This is especially the case if it is not clear exactly how the model was trained and which
training and test data was used.
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Figure 4.1: Visualization of the Quantization Scheme by Jacob et al. [99].
The continuous interval on top is mapped to the discrete interval below, and
multiple numbers may map to the same integer due to the rounding.

It turns out we can compute c from all the ai, bi by using integer-only arithmetic
and fixed-point multiplication, as shown in the following.

Since γ ≈ m3 · (c− z3), αi ≈ m1(ai− z1) and βi ≈ m2(bi− z2), it holds that

m3 · (c− z3) ≈ γ =

N∑
i=1

αi · βi ≈
N∑
i=1

m1 · (ai − z1) ·m2 · (bi − z3).

Hence, we can approximate c as

c = z3 +
m1 ·m2

m3
·
N∑
i=1

(ai − z1) · (bi − z2) (4.2)

The summation s =
∑N

i=1(ai−z1) · (bi−z2) involves integer-only arithmetic
and it is guaranteed to fit in 16 + logN bits, since each summand, being the
product of two 8-bit integers, fits in 16 bits. However, since m = (m1m2)/m3

is a real, the product m · s cannot be done with integer-only arithmetic. This
product is handled in TFLite by essentially transforming m into a fixed-
point number and then performing fixed-point multiplication, rounding to the
nearest integer. More precisely, m is first normalized as m = 2−nm′′ where
m′′ ∈ [0.5, 1),5 and then m′′ is approximated as m′′ ≈ 2−31m′, where m′ is a
32-bit integer. This is highly accurate since m′′ ≥ 1/2, so there are at least 30
bits of relative accuracy.

Thus, given the above, the multiplication m · s is done by computing the
integer productm·s, which fits in 64 bits since bothm and s use at most 32 bits
(if N ≤ 216), and then multiplying by 2−n−31 followed by a rounding-to-nearest
operation. Finally, addition with z3 is done as simple integer addition.

If the quantization parameters for γ were computed correctly, it should be
the case, by construction, that the result c lies in the correct interval [0, 28)Z.

5Jacob et al. [99] find that in practice m ∈ [0, 1), which is the reason why such
normalization is possible. We also confirm this observation in our experiments, although it is
not hard to extend this to the general case (in fact, TFLite already supports it).
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However, due to the different rounding errors that can occur above, this may
not be the case. Thus, the result obtained with the previous steps is clamped
into the interval [0, 28)Z.

Addition of bias

In the context of CNNs the dot products above will come from two-dimensional
convolutions. However, these operations not only involve dot products but also
the addition of a single number, the bias. In order to handle this in a smooth
manner with respect to the dot product above, the scale for the bias is set as
m1m2/m3 and the zero-point it set to 0. This allows the quantized bias to be
placed inside the summation s, involving no further changes to our description
above.

Other layers

Other layers like ReLU, ReLU6 or max pooling, which involve only comparisons,
can be implemented with relative ease directly on the quantized values, assuming
these share the same quantization parameters. This is because if α = m(a− z)
and β = m(b− z), then α ≤ β if and only if a ≤ b, so the comparisons can be
performed directly on the quantized values.

In fact, activations like ReLU6 (which is used extensively in the models we
consider in this work) can be entirely fused into the dot product that precedes
it, as shown in Section 2.4 of [99]. Since ReLU6 is essentially a clamping
operation, it is possible, by carefully picking the quantization parameters, to
make the clamping of the product to the interval [0, 28)Z also take care of the
ReLU6 operation. In short, if the zero-point is 0 and the scale is 6/255, then
we are guaranteed that m(q − z) ∈ [0, 6] for any q ∈ {0, . . . , 28 − 1}.

On the other hand, mathematical functions like sigmoid must be handled
differently. We will not be concerned with this type of functions in this document
since it is the case in practice that ReLU and ReLU6 (or similar activation
functions) are typically enough.6

4.3 Quantized CNNs in MPC

In the previous section we discussed how quantization of neural networks works,
or, more specifically, we discussed the quantization scheme by Jacob et al. [99].
Now, we turn to the discussion about how to implement these operations using
MPC. However, before diving into the details of the protocols we use in this
work, we describe the setting we consider for the secure evaluation of CNNs.

6See [99] for a discussion on quantization of mathematical functions.
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System and Threat Model

Like most previous work on secure inference using MPC, we consider a setting
where both the model owner and client outsource their model, respectively
input to a set of servers that perform that actual secure inference.

We consider a setting of either two or three servers P1, P2 and P3 depending
on the setting (honest or dishonest majority) among which one is allowed to
be corrupted. The model and input owner each secret-share their inputs to the
servers at the beginning of the protocol execution. This preserves the privacy
of this sensitive information under certain assumptions on the adversarial
corruption. Then, the servers execute a secure multiparty computation protocol
to evaluate the quantized model on the given input, obtaining shares of the
output, which can then be sent to the party that is supposed to get the
classification result.

As we already mentioned previously, our techniques have the crucial feature
that virtually any secret-sharing-based MPC protocol can be used as the
underlying computation engine. More precisely, let R be either Z2k or Fp,
we only assume a secret-sharing scheme J·K over R for two or three parties
(depending on the setting) withstanding one corruption, allowing local additions
Jx+yK← JxK+ JyK, together with a protocol for secure multiplication Jx ·yK←
JxK · JyK.7

The general-purpose MPC protocols we use in this work can be categorized
according to three different dimensions: corruption threshold, type of corrup-
tions and underlying algebraic structure. For the first dimension we distinguish
between two cases: honest vs dishonest majority. In the former, the adversary
is allowed to corrupt strictly less than half of the parties. We instantiate
this case with 3 parties and 1 corruption, as that leads to the most efficient
protocols. In the latter case, the adversary can corrupt any number of parties
provided at least one party remains honest. We instantiate this setting for 2
parties. While honest majority protocols impose a stronger security assumption
than dishonest majority, they tend to be simpler in their design and thus more
efficient. We further distinguish between passive and active corruptions, where
the former means the adversary follows the protocol and the latter allows
the adversary to deviate. Not surprising, actively secure protocols impose an
overhead over passively secure ones. Finally, the algebraic structure on which
the computation takes place also plays an important role in terms of efficiency
and protocol design, with protocols over Fp being easier to design and possibly
implement, but protocols over Z2k providing some efficiency improvements in
terms of basic arithmetic and bit-operations [61]

We consider a total of 8 MPC protocols to support the secure evaluation
of the quantized CNNs, corresponding to all the possible combinations of the

7Protocols with these features are typically referred to as general-purpose MPC protocols,
and any construction that only makes use of these properties is said to be in the arithmetic
black-box model.
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Threshold Z2k Fp

t < n
Passive OTSemi2k OTSemiPrime
Active SPDZ2k LowGear

t < n/2
Passive Replicated2k ReplicatedPrime
Active PsReplicated2k PsReplicatedPrime

Table 4.1: MPC protocols we use, classified depending on their security level
(passive vs. active) and their arithmetic properties (modulo 2k vs. modulo a
prime). Names are from MP-SPDZ.

three dimensions mentioned above (active/passive, honest/dishonest majority
and computation modolu a prime or a power-of-two). Table 4.1 contains an
overview of which protocol is used in which security model. We provide more
details on each protocol in Section 5.7 in the appendix.

Building Blocks

For many applications, the multiplication protocol assumed for J·K is not enough.
In practice, many useful functionalities cannot be nicely expressed in terms of
additions and multiplications and therefore, more often than not, researchers
end up developing custom protocols for specific applications. As we argued in
Section 5.1, this also includes the case of secure evaluation of Neural Networks.

In our case, thanks to the quantization scheme by Jacob et al. [99] most of
the operations in the evaluation of a quantized Neural Network become addi-
tions and multiplications, which are already supported by the MPC protocols
we consider here. Furthermore, the multiplications have a very special struc-
ture: they are part of a dot product operation, which can be computed more
efficiently for the particular case of passive security with an honest majority.
However, the evaluation still requires non-arithmetic operations like truncations
and comparisons, which are more expensive and require specialized subpro-
tocols for their computation. These, fortunately, can be also implemented
in the arithmetic black-box model, that is, making use only of additions and
multiplications, which preserves our flexibility when it comes to the underlying
MPC protocol. In what follows we describe the primitives we require in order
to integrate the quantized models from Section 4.2 into our secure engine.

Secure comparison

An important primitive involves comparing two secret-shared values, in order
to take certain action depending on which of the two is larger. However, since
revealing which of the two inputs is larger leaks information about the inputs
themselves (which is not allowed in many applications), a secure comparison
protocol outputs the bit indicating the result of the comparison in secret-shared



4.3. QUANTIZED CNNS IN MPC 55

form. More precisely, a secure comparison subprotocol allows the parties to

compute JbK← JxK
?
< JyK, that is, b = 1 if x < y, and b = 0 otherwise.

Just like the case with truncation, this problem is well motivated and has
received enough attention by the community, with many existing proposals
providing different trade-offs. Given this, we may assume the existence of a
secure comparison subprotocol, which can be instantiated for example using
the constructions from [38] for the field case, and [62] for the ring case. For
the special case of replicated secret sharing over Z2k , Mohassel and Rindal
[117] have proposed a more efficient approach. Comparison is equivalent to
extracting the most significant bit of the difference between the two operands.
This bit can be computed from the carry bit of adding the three shares, which
in turn is possible to achieve by a binary circuit on the local bit decomposition
of shares. While this binary circuit has linear complexity in the bit length, it
only takes one bit to compute an AND gate in this setting.

Truncation by a public value

As we have already discussed in the introduction, most existing works in the
area of secure inference make use of fixed-point arithmetic, in which a rational
number α is approximated by the closest integer to α · 2t, where t is some fixed
parameter. To keep the right representation after multiplying two fixed-point
numbers, the result must be truncated by t bits, which is a non-linear operation
and generates several complexities when done in MPC.

Many solutions have been developed throughout the years for computation
over both the field Fp and the ring Z2k . We refer the reader to [38] and [62] for
details on these. For the purpose of our work, we assume the existence of a
subprotocol that computes JyK← JxK, where y = b x2m c, where m is some fixed,
public parameter.

It is also useful to consider the concept of probabilistic truncation. In
this case, instead of obtaining JyK from JxK, where y = b x2m c, a protocol for
probabilist truncation computes JzK where z = b x2m c+ u and u is some small
error. In practice, u ∈ {0, 1}, and u is “biased towards b x2m e”, meaning that u
equals 1 with probability the decimal part of x

2m , which equals (x mod 2m)/2m.
As an example, if x = 7 and m = 2, a protocol for probabilistic truncation
would produce either b7

4c = 1 or b7
4c+ 1 = 2, where the latter happens with

probability .75.
Since neural networks tend to be quite resilient to small changes in the

activations, which as we will see is the ultimate effect of having probabilistic
truncation instead of deterministic (i.e. exact), this approach should not affect
the accuracy of the models substantially, although we do not verify this ex-
perimentally. Furthermore, probabilistic truncation protocols tend to perform
much better than deterministic ones, as we show experimentally in Section 5.7.
This is because these protocols avoid the usage of expensive binary adders and
other similar binary circuits that appear in the deterministic case. See [38] for
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some details. In what follows we introduce some novel protocols for the task of
probabilistic truncation over a ring Z2k .

Probabilistic truncation over the ring Z2k . Truncation over the ring
Z2k is considerably more difficult as truncation over Fp, as the latter relies on
the fact that division by 2m can be done simply by locally multiplying by the
inverse of 2m, which is not possible over Z2k . The authors in [62] and [117]
propose alternative methods to deal with this issue, but unfortunately their
methods require either non-constant number of rounds, or require a large gap
between the shares and the secret, which hurts performance.

Instead, we propose a novel method to perform secure truncation over Z2k ,
where the shares only need to be one bit larger than the secrets and the number
of rounds is constant. The result may have an error of at most 1, but this
error is biased towards the nearest integer to x/2m, where x is the value being
truncated. In our protocol we assume a method to produce random shared
bits, that is, JbK where b ∈ {0, 1} is uniformly random and unknown to the
adversary. This can be done in the dishonest majority setting as proposed in
[62], or more generally, we can let each party Pi propose a bit JbiK (which can
be checked to be a bit indeed by verifying that JbiK · (1− JbiK) is 0) and then
the parties XOR these bits together to get one single random bit.

Protocol 1 TruncPrZ
2k

(JxK,m)

Pre: x with MSB(x) = 0.

Post: Jx/2mK rounded according to text.
Proceed as follows:

1. Generate k random shared bits JriK and compute JrK←
∑

iJriK · 2i.

2. Open c← JxK + JrK and compute c′ ← (c/2m) mod 2k−m−1.

3. Compute JbK← Jrk−1K⊕ (c/2k−1).

4. Output c−
∑k−2

i=mJriK · 2i−m + JbK · 2k−m−1.

An improvement for the ring case with three parties, honest majority
and passive security. By further restricting the setting, more optimizations
can be done. We consider replicated secret sharing over Z2k with three parties
and passive security. Our truncation protocol emulates the black-box proba-
bilistic truncation in the setting of semi-honest computation over a power of two
with an honest majority. Informally, it changes from a symmetric three-party
protocol to a two-party protocol where the third party generates correlated
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randomness used by the the other parties. This allows to generate random
values of any bit length at once without the need to generate such random
values bit-wise. The latter is the main cost in black-box probabilistic truncation
because the communication is independent of the number of bits otherwise.

Protocol 2 TruncPrSpZ
2k

(JxK,m)

P3 proceeds as follows:

1. Sample random bits {ri} for i ∈ [0, k − 1].

2. Generate 2-out-of-2 sharings of r =
∑

i ri ·2i, rk−1, and
∑k−2

i=m ri ·2i−m,
and send one share to P1 and P2 each.

3. Generate random y1, y3 ∈ Z2k and send y1 to P1 and y3 to P2.

4. Output (y3, y1).

P1 and P2 proceed as follows:

1. Convert JxK to a 2-out-of-2 sharing by P1 computing x1 + x2 and P2

proceeding with x3.

2. Execute TruncPrZ
2k

as two-party computation using the random
values received from P3.

3. Pi: Let y′i denote the share output by TruncPrZ
2k

and ŷi the share
received from P3 (y1 or y3). Send y′i− ŷi to P2−i. Denote the received
value by ỹi.

4. P1 outputs (y1, y
′
1 − ŷ1 + ỹ1), and P2 outputs (y′2 − ŷ2 + ỹ2, y3).

For correctness, we have to establish that the parties output a correct
replicated secret sharing of the result. To establish the correct replicated secret
sharing, consider

y′1 − ŷ1 + ỹ1 = y′1 − ŷ1 + y′2 − ŷ2

= ỹ2 + y′2 − ŷ2.

Furthermore,

y1 + y3 + y′1 − ŷ1 + ỹ1 = y1 + y3 + y′1 − ŷ1 + y′2 − ŷ2

= y1 + y3 + y′1 − y1 + y′2 − y2

= y′1 + y′2,

which equals the result of TruncPrZ
2k

by definition.
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Since we only aim for semi-honest security with honest majority, we have to
show that each party does not learn any information about x if all parties follow
the protocol. This is trivial for P3 because they do not receive anything. For
P1 and P2, the randomness received from P3 is independent of x. Furthermore,
the security of the two-party TruncPrZ

2k
execution follows by the black-box

definition of it. Finally, ỹi does not reveal information because ŷ2−i is uniformly
random and unknown to Pi.

Truncation by a Secret Value

The truncation protocols we have considered so far assume that the amount
of bits to be truncated, m, is public. This is a natural setting and appears
for instance in fixed-point multiplication, where m is equal to the amount of
bits assigned for the decimal part. However, as we already argued in Section
4.2, the quantization scheme we use here differs from traditional fixed-point
arithmetic in that the parameters for the discretization are adaptively chosen
for each particular layer of the network. As a side effect, these parameters
become information of the model, and therefore they must not be revealed in
the computation. As a result, truncation by secret amounts become necessary.

In this section we present our protocol for truncation by a secret amount.
It takes as input a secret JxK and a shift m represented by J2M−mK where M
is some public upper bound on m,8 and outputs JyK where y = b x2m c.

Protocol 3 truncpR(JxK, JmK)

The parties proceed as follows.

1. Compute J2M−m · xK = J2M−mK · JxK.

2. Return JyK← TruncR(J2M−m · xK,M).

Security. We informally argue that the shift m used in the protocol remains
hidden. To this end, simply notice that m is provided as input to the MPC
protocol in secret-shared form JmK. Then, the multiplication J2M−m · xK =
J2M−mK · JxK does not leak anything since we assume the underlying multi-
plication protocol is secure. Finally, since we assume the protocol for public
truncation TruncR is secure, the call JyK← TruncR(J2M−m ·xK,M) produces cor-
rect shares without leaking anything, which implies that y = b2M−mx

2M
c = b x2m c.

8We may alternatively assume that m itself is shared. The conversion JmK→ J2M−mK
can be achieved then by first bit-decomposing M −m as

∑
i 2

i · bi, computing shares of each
bi and then outputting J2M−mK =

∏
i(1 + JbiK · (22

i

− 1)). However, since in our setting m is
known by the client who has the model, it is simpler to assume that the client distributes
J2M−mK to begin with.
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The only requirement for this protocol to work is that (M −m) + log2(|x|)
must be smaller than bit-length of the modulus of the secret sharing scheme
since, in this case, it can be seen that 2M−m · x does not overflow.

Putting it all Together

Using the building blocks that we just described, together with the quantization
scheme from Section 4.2, we can securely evaluate quantized neural networks
in an easy way. As we discussed in Section 4.2, evaluating a quantized CNN
consists mostly of computing the expression in Eq. (4.2), followed by a clamping
procedure. We describe these computations in this section, along with the
other necessary pieces for the evaluation of a quantized CNN.

Recall from Section 4.2 that each weight tensor a
¯
in a quantized CNN has a

scale m ∈ R and a zero-point z ∈ Z28 associated to it, such that α ≈ m · (a− z)
is the actual floating-point numbers corresponding to each 8-bit integer a in
the tensor. Also, biases are quantized in a similar manner but with a 32-bit
integer instead, a zero point equal to 0, and a scale that depends on the inputs
and output to the layer it belongs to, as explained in Section 4.2. We assume
that the model owner, who knows all this information, distributes shares to the
servers using the scheme described above of the quantized weights and biases
of each layer in the network.9 Also, the zero points associated to each tensor
are shared towards the parties.

The scales of the model, on the other hand, are handled in a slightly
different way. Each dot product in the quantized network requires a fixed-point
multiplication by a factor m = (m1 ·m2)/m3, borrowing the notation from
Section 4.2. Recall that this product was handled by writing m = 2−n−31 ·m′,
where m′ is a 32-bit integer.

Now, to compute securely the expression in Eq. (4.2), recall that the
parties have shares of the zero points z1, z2, z3, the quantized inputs ai, bi for
i = 1, . . . , N , the integer scale m′ and the power 2L−`, where ` = n+ 31 with
2−n−31 ·m′ ≈ m = (m1 ·m2)/m3, and L is an upper bound on `.10 To compute
Eq. (4.2), the parties begin by computing the dot product JsK =

∑N
i=1(JaiK−

Jz1K) · (JbiK− Jz2K). Then, an additional secure multiplication is used in order
to compute Jm · sK = JmK · JsK. Next, shares of b2−n−31 · (m · s)e are computed
from J2L−`K and Jm · sK using Protocol truncp from Section 4.3, together with
the observation that

⌊
2−m · x

⌉
=
⌊
2−m · x+ 0.5

⌋
=
⌊
2−m · (x+ 2m−1)

⌋
for

breaking a tie by rounding up.
9Notice that these values are only 8-bit long in the clear, but the shares are 64-bit long.

The reason is that, although the values are small, the computation must be carried without
overflow. Therefore we cannot use a modulus that is smaller than the maximum possible
intermediate value.

10Since n ≤ 32 it suffices to take M = 63. In this case, given that m ≥ 31, it follows that
2M−m ≤ 232. According to Section 4.3, this imposes the restriction that the modulus for the
computation must be at least 32 + 64 = 96. In practice n is smaller than 32 and this bound
can be improved.
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Finally, addition with Jz3K is local, and it is followed by the clamping the
result JxK to the interval [0, 28). This is done by comparing JxK to the limits (0
and 255) using a secure comparison protocol (see Section 4.3), followed by an
oblivious selection: If s ∈ {0, 1}, it holds trivially that as = s · (a1 − a0) + a0

for arbitrary a0, a1.

Other layers. Average pooling involves computing JyK from Jx1K, . . . , JxnK,
where y = b 1

n ·
∑n

i=1 xie. This can be achieved using Goldschmidt’s algorithm
[83], a widely used iterative algorithm for division. For its usage in the context
of secure multiparty computation, see for example Catrina and Saxena [39].
It uses basic arithmetic as well as truncation, both of which we have already
discussed.

On the other hand, max pooling requires implementing the max function
securely, which can be easily done by making use of a secure comparison
protocol [38].

Finally, once shares of the output vector are obtained (raw output, before
applying Softmax), several options can be considered. The parties could open
the vector itself towards the input owner and/or data owner so that they
compute the Softmax function and therefore learn the probabilities for each
label. However, this would reveal all the prediction vector, which could be
undesirable in some scenarios. Thus, we propose instead to securely compute
the argmax of the output array, and return this index, which returns the most
likely label since exponentiation is a monotone increasing function. Previous
work, such as SecureML [118], replace the exponentiation in the Softmax
function with ReLU operations, i.e. by computing ReLU(x) instead of ex. More
MPC friendly solutions exist, such as the spherical Softmax [64], which replaces
ex with x2.

4.4 Implementation and Benchmarking

This section discusses our implementation and our performance results.

MobileNets

Our benchmarks are all performed by evaluating networks of the MobileNets
type architecture [95]. A MobileNets network consists of 28 layers with 1000
output classes and are trained on the ImageNet data set [97]. Layers are
alternating (with few exceptions at the start and end) pointwise convolutions
and depthwise convolutions. A pointwise convolution is a regular convolution
with a 1×1 filter, while a depthwise convolution can be viewed as a convolution
where no summation across output channels occurs. The size of the network
can be adjusted by two hyper parameters: a width multiplier α and a resolution
multiplier ρ. α scales input and output channels, while ρ scales the dimensions
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# sum-of-products mod 2k mod p mod p (active security)

Runtime (s) Comm. (gb) Runtime (s) Comm. (gb) Runtime (s) Comm. (gb)

50 000 0.25 0.15 1.6 0.54 8.8 4.3
100 000 0.41 0.31 2.5 1.07 15.6 8.5
150 000 0.57 0.46 3.6 1.59 22.5 12.8
200 000 0.73 0.62 4.5 2.12 29.2 17.0

# of terms

256 0.27 0.31 1.9 1.1 9.4 5.7
512 0.30 0.31 2.0 1.1 13.9 8.5
768 0.33 0.31 2.3 1.1 18.5 11.4
1024 0.36 0.31 2.4 1.1 22.9 14.3

Table 4.2: Top: running a variable number of sum-of-products of constant
length ` = 512. Bottom: Running n = 100.000 sum-of-products with variable
length.
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Figure 4.2: Evaluation times for honest majority protocols. x-axis generally
correspond to evaluating larger models.

of the input image. Thus α reduces both the model size (as there will be fewer
parameters with a smaller α) and number of operations, while ρ only scales the
number of operations. In the following we denote a particular model as “V1
α_S” where S is the height and width of the input image (thus dependent on
ρ). We evaluate the pretrained models which are available on the Tensorflow
repository,11 and we use their accuracy values.

11See https://www.tensorflow.org/lite/guide/hosted_models

https://www.tensorflow.org/lite/guide/hosted_models
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Figure 4.3: Evaluation times for dishonest majority protocols. x-axis generally
correspond to evaluating larger models.

Quantizing arbitrary tensorflow models. We choose to evaluate the
MobileNet models for two reasons: First, they can be considered realistic in the
sense that they are expressive enough to solve a wide variety of image related
classification tasks. Thus, the evaluation times we report in this section will
correspond to running evaluations of similarly expressive models in practice.
Second, the models are hosted in pre-trained form online which in principle
makes our results reproducible (prior work, while sometimes describing the
architecture of the models they evaluate, very rarely describe the training
process).

However, our technique is by no means limited to running only MobileNet
networks. A quantized model is obtained either by performing quantization
aware training12 or by post-quantizing an already trained model13. We stress
that both these models are implemented entirely by TensorFlow, so no external
conversion is needed.

Implementation

We implement secure inference in the MP-SPDZ framework, which allows us to
get timings for all the protocols described in Section 5.7. These protocols run
over either a prime p or a ring Z2k . The prime is 128 bits while the k we use

12See https://github.com/tensorflow/tensorflow/tree/r1.13/tensorflow/
contrib/quantize

13See https://www.tensorflow.org/lite/performance/post_training_quantization

https://github.com/tensorflow/tensorflow/tree/r1.13/tensorflow/contrib/quantize
https://github.com/tensorflow/tensorflow/tree/r1.13/tensorflow/contrib/quantize
https://www.tensorflow.org/lite/performance/post_training_quantization
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Variant Accuracy Trunc.

Passive Security

Dishonest Maj. Honest Maj.

Top-1 Top-5 Z2k Fp Z2k Fp

V1 0.25_128 39.5% 64.4% Prob. 139.5 129.1 0.2 3.3
Exact 203.2 155.0 1.0 3.8

V1 0.25_160 42.8% 68.1% Prob. 214.5 201.1 0.3 5.2
Exact 317.7 241.2 1.4 6.1

V1 0.25_192 45.7% 70.8% Prob. 305.1 288.5 0.4 7.3
Exact 460.6 343.1 2.0 8.7

V1 0.25_224 48.2% 72.8% Prob. 417.6 383.3 0.5 10.0
Exact 614.1 460.8 2.9 11.8

V1 0.5_128 54.9% 78.1% Prob. 305.4 267.0 0.4 6.5
Exact 430.1 316.3 1.8 7.7

V1 0.5_160 57.2% 80.5% Prob. 472.6 418.3 0.6 10.4
Exact 672.1 496.5 2.9 12.5

V1 0.5_192 59.9% 82.1% Prob. 676.1 593.1 0.9 15.2
Exact 978.0 706.3 4.3 17.9

V1 0.5_224 61.2% 83.2% Prob. 915.6 802.2 1.1 20.5
Exact 1320.6 955.6 5.8 24.4

V1 0.75_128 55.9% 79.1% Prob. 485.4 421.2 0.6 9.9
Exact 697.3 494.5 2.8 11.9

V1 0.75_160 62.4% 83.7% Prob. 775.7 662.2 1.1 15.9
Exact 1075.8 779.5 4.6 19.0

V1 0.75_192 66.1% 86.2% Prob. 1101.1 943.0 1.6 23.3
Exact 1536.9 1114.8 6.7 27.3

V1 0.75_224 66.9% 86.9% Prob. 1487.2 1276.8 2.2 31.4
Exact 2135.5 1505.8 9.6 37.4

V1 1.0_128 63.3% 84.1% Prob. 709.4 587.1 1.0 13.5
Exact 968.5 694.1 4.0 16.3

V1 1.0_160 66.9% 86.7% Prob. 1101.8 928.4 1.8 21.7
Exact 1528.0 1084.0 6.5 25.9

V1 1.0_192 69.1% 88.1% Prob. 1581.6 1323.9 2.6 31.5
Exact 2214.8 1549.0 9.5 37.0

V1 1.0_224 70.0% 89.0% Prob. 2147.3 1792.2 3.5 42.5
Exact 2943.3 2101.4 13.1 50.4

Table 4.3: Running time, in seconds, of securely evaluating some of the networks
in the MobileNets family with passive security, in a LAN network. The first
number in variant is the width multiplier and the second is the resolution
multiplier. Top-1 accuracy measures when the truth label is predicted correctly
by the model whereas Top-5 measures when the truth label is among the first
5 outputs of the model. Prob. and Exact refer to probabilistic truncation and
nearest rounding, respectively.

for the ring is 72 bits. As described in Section 4.3, these arise because we need
some extra space in order for the truncation by a secret shift to be correct.
We arrive at k = 72 experimentally by computing the sizes of the shift and
dot-products needed in the models we evaluate.

We ran all our benchmarks on colocated c5.9xlarge AWS machines, each
of which has 36 cores, 72gb of memory, a 10gpbs link between them and sub-
millisecond latency. Throughout this section, communication is measured per
party and all timings include preprocessing. Our code has been published as
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Variant Accuracy Trunc.

Active Security

Dishonest Maj. Honest Maj.

Top-1 Top-5 Z2k Fp Z2k Fp

V1 0.25_128 39.5% 64.4% Prob. 1264.9 1377.8 5.3 9.0
Exact 1864.9 1592.0 6.8 10.5

V1 0.25_160 42.8% 68.1% Prob. 1997.4 2070.4 8.1 14.3
Exact 2916.1 2432.8 10.6 16.9

V1 0.25_192 45.7% 70.8% Prob. 2827.8 2875.0 11.8 20.3
Exact 4173.9 3389.8 15.3 24.1

V1 0.25_224 48.2% 72.8% Prob. 3825.6 3855.3 16.1 27.3
Exact 5629.6 4574.0 20.6 32.5

V1 0.5_128 54.9% 78.1% Prob. 2731.5 2760.4 10.9 18.5
Exact 3950.3 3183.4 14.0 21.8

V1 0.5_160 57.2% 80.5% Prob. 4331.5 4277.2 17.7 29.8
Exact 6177.5 5006.9 22.3 34.7

V1 0.5_192 59.9% 82.1% Prob. 6194.6 6026.6 25.5 42.7
Exact 8924.5 7025.4 32.6 50.9

V1 0.5_224 61.2% 83.2% Prob. 8446.5 8112.9 33.7 57.7
Exact 11962.2 9143.3 43.7 68.2

V1 0.75_128 55.9% 79.1% Prob. 4440.8 4152.6 17.4 29.3
Exact 6203.2 4754.5 21.9 34.4

V1 0.75_160 62.4% 83.7% Prob. 7018.5 6502.8 28.3 46.9
Exact 9780.5 7491.2 36.1 55.1

V1 0.75_192 66.1% 86.2% Prob. 10053.3 9145.2 40.5 68.0
Exact 13991.2 10696.1 50.8 78.5

V1 0.75_224 66.9% 86.9% Prob. 13634.5 12367.3 54.4 91.9
Exact 18962.2 14370.4 69.3 107.7

V1 1.0_128 63.3% 84.1% Prob. 6381.8 5733.0 24.9 40.9
Exact 8797.0 6624.6 31.1 48.1

V1 1.0_160 66.9% 86.7% Prob. 10142.0 9006.3 39.9 65.3
Exact 13780.4 10357.2 49.6 76.8

V1 1.0_192 69.1% 88.1% Prob. 14471.8 12778.3 57.0 95.3
Exact 19725.0 14770.0 71.4 110.0

V1 1.0_224 70.0% 89.0% Prob. 19691.6 17211.3 76.9 129.0
Exact 26714.3 19910.4 96.2 151.3

Table 4.4: As the previous table, but active security.

part of MP-SPDZ [63].

Microbenchmarks

The main gain in efficiency is obtained by virtue of dot-products, or sums-
of-products, being essentially free in some of the protocols we evaluate. We
illustrate the efficiency of this optimization in Table 4.2.

Our micro-benchmarks are focused first and foremost on measuring the cost,
in terms of time and communication, of the core operation of any CNN: the sum-
of-product operation (in the MobileNets models, essentially all computations
are convolutions). The top table in Table 4.2 shows the result of running
a variable number of dot products each of a fixed length, and the bottom
table in Table 4.2 shows the result of running a fixed number of dot products
with variable length. We choose numbers that reflect realistic sizes for the
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convolutions, for example, the largest convolution in the smallest MobileNetsV1
network contains some 60K dot products.

Unsurprisingly, we see a noticeable slowdown for protocols where the com-
munication cost of dot-products depend on the number of terms. For example,
the active security modulo p protocol has a runtime increase of roughly ×2.4,
when the number of terms is quadrupled, whereas the passive modulo 2k only
sees a ×1.3 increase in cost.

Full model evaluation

We evaluate 16 pre-trained V1 MobileNet models of varying sizes. Each model
is evaluated across four different dimensions:

1. Corruption threshold: We evaluate with both honest and dishonest
majority, where the former uses three parties and the latter two.

2. Corruption model: Passive vs. active security.

3. Algebraic structure: We consider protocols over rings and protocols over
fields, with parameters as outlined above.

4. Probabilistic vs. exact truncation.

Full end-to-end (i.e., with pre-processing) evaluation times for all models in
all settings are shown in Table 4.3 and 4.4.14

Discussion. For the following discussion, we will mainly rely on the two
graphs in Figure 4.2 and Figure 4.3. Both graphs use the 8 models from Table
4.3 and Table 4.4 with S ∈ {128, 192}. Figure 4.2 are evaluation times for
protocols with honest majority while Figure 4.3 are protocols with dishonest
majority.

As a first thing, we observe that corruption threshold is the most influential
factor in terms of evaluation times. Indeed, just comparing the y-axis of
Figure 4.2 with the y-axis of 4.3 shows that there is a huge difference. The
overhead with respect to moving from honest majority to dishonest majority is
as high as 200 times for certain configurations places (active security for Z2k

for V1 1.0_192, for example). This large difference would be attributed to the
expensive pre-processing that is needed in the dishonest majority case.

On the other hand, moving between different corruption models is relatively
cheap. In this regard, the overhead is in fact more or less the same regardless
of the threshold. I.e., moving from passive to active security only increases the
inference time by a factor of between 3 and 30.

14The original publication contains just a single table, which were split into two for this
thesis for formatting reasons.
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Passive Security Active Security

Dishonest Maj. Honest Maj. Dishonest Maj. Honest Maj.

# parties Z2k Fp Fp Z2k Fp Fp

Time (s)
3 401.1 320.9 5.5 2456.8 2255.0 24.8
4 799.6 597.4 7.4 3632.8 3063.7 36.0
5 1332.9 959.5 15.8 4814.3 3921.0 54.7

Comm. (GB)
3 594.8 114.8 7.3 3513.8 515.2 31.8
4 1183.0 232.2 8.2 5266.5 766.4 35.8
5 1965.1 389.2 20.7 7018.7 1016.7 68.6

Table 4.5: Time and communication per party for computing V1 0.25_128
with probabilistic truncation.

We also observe that the choice of algebraic structure—field vs. ring—
provides a performance boost in some cases. The ring-based protocols mostly
outperform the field-based protocols in the passive case, while the reverse
is true for active security. This is because we use homomorphic encryption
with fields in this case but oblivious transfer with rings, which has a higher
communication requirement. Otherwise, we attribute the difference to the fact
that the ring we use is smaller than the field for security requirements. In
particular, operations over Z272 can be performed by operating on only 72-bits
(in particular, support for 128-bit wide types which exist in e.g., GCC can
be used), while operating over Fp for p ≈ 2128 require multiplication of two
128-bit integers without overflow even when using Montgomery representation.
Furthermore, we use the faster comparison proposed by Mohassel and Rindal
[117] in the honest-majority setting with rings.

Finally, we observe, not surprisingly, that inference can be sped up by
relying on a less precise method of truncation. For example, if we consider
the first rows (model V1 0.25_128) in Table 4.3 and Table 4.4 we see that
probabilistic truncation speeds up inference by between 80% and 15%. However,
this increase in efficiency comes at the cost of a (possible) decrease in accuracy.
We do not expect that this boost in efficiency will become more pronounced
for deeper models, since the exact truncation protocol only depends on the size
of the integers being truncated.

Scaling. For protocols that support more than three parties, Table 4.5 shows
how the simplest network scales with up to five parties. Note we do not use
Shamir of replicated secret sharing here for honest-majority computation. This
explains why there is no ring-based protocol and the discrepancy between the
results here and in Table 4.3 and Table 4.4. The number of corrupted parties
is set to the maximum in the respective protocols, that is, 2, 3, 4 for dishonest
majority, and 1, 1, 2 for honest majority.
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A B C D SN

Time
CrypTFlow 16 57 90 24 622
Ours w/o TruncPrSp 23 67 122 22 2099
Ours w/ TruncPrSp 13 18 49 15 484

Comm
CrypTFlow 1.9 6.2 15.3 2.2 187
Ours w/o TruncPrSp 2.3 28.1 44.3 3.9 512
Ours w/ TruncPrSp 1.1 2.6 7.0 1.1 59

Table 4.6: Time (in ms) and total communication (in MB) for SecureNN A–D
and CIFAR10 SqueezeNet networks.

Special Truncation

In order to evaluate the benefit of our special truncation, we have benchmarked
our implementation with and without it against CrypTFlow [109] using the
SecureNN Networks A–D [142] as well as the CIFAR10 SqueezeNet examples in
the CrypTFLow codebase [129]. Networks A–D are simple networks consisting
of up to about ten layers using only matrix multiplication, convolution, ReLU,
and max-pooling while the CIFAR10 SqueezeNet involves more than ten of each
convolutions and ReLU. Table 4.6 shows our results using the same network
setup as previously described. Special truncation consistently improves over
CrypTFlow whereas the results without are sometimes considerably worse. The
improvement is noticeable because truncation in CrypTFlow simply consists
of local operations whereas we use a protocol for this. The protocol has the
advantage that it does not pose restrictions on the secret value whereas the
method in CrypTFlow requires that the most significant s bits of the secret
are zero for a statistical security parameter s. Without special truncation, we
rely on a protocol that requires k random bits to mask a k-bit value. The
generation of random bits in turn requires at least k bit in communication,
which makes the overall communication quadratic in k. Special truncation
however has communication cost linear in k. Note also that we use comparisons
as in ABY3 [117], which is comparable to the approach in CrypTFlow in that
the protocol is very specific to the security model and computation domain.

We have also implemented CrypTFlow’s ImageNet examples with and
without special truncation. The results can be found in Table 4.7. Note the
results were obtained with the optimal number of threads for both frameworks,
which is 32 for MP-SPDZ and 8 for CrypTFlow.

4.5 Conclusions

We show that it is possible to securely evaluate large and realistic networks, so
called ImageNet networks, using more-or-less existing MPC protocols. Moreover,
the networks we evaluate are unmodified and can be trained using standard
Tensorflow or any other framework which supports the type of quantization
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SN RN-50 DN-121

Time
CrypTFlow 10.9 26.9 37.2
Ours w/o TruncPrSp 2.5 18.9 19.8
Ours w/ TruncPrSp 0.6 4.7 3.7

Comm
CrypTFlow 2.6 6.9 10.5
Ours w/o TruncPrSp 7.4 53.0 60.3
Ours w/ TruncPrSp 0.8 3.8 4.6

Table 4.7: Time (in s) and total communication (in GB) for SqueezeNet,
ResNet-50, and DenseNet-121 classification for ImageNet.

discussed (which currently includes both PyTorch and MXNet). This work
thus provides a very appealing approach to secure evaluation from an end-users
perspective: First, because standard MPC suffices, it is possible to choose from
a wider array of threat models than previous works allow. While the passive
security honest majority setting is by far the most efficient, our benchmarks
still provide an interesting insight into the exact trade-off one wants secure
inference against dishonest majority. Second, the fact that models directly
output by Tensorflow can be evaluated without modification, means that model
designers can remain oblivious to the secure framework. However, we also saw
that choices of more specialized protocols, such as our special probabilistic
truncation, can be beneficial if one wants a trade-off in terms of prediction
accuracy and speed.
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Abstract. In this paper we present the concept of linear secret-sharing
homomorphisms, which are linear transformations between different
secret-sharing schemes defined over vector spaces over a field F and allow
for efficient multiparty conversion from one secret-sharing scheme to
the other. This concept generalizes the observation from (Smart and
Talibi, IMACC 2019) and (Dalskov et al., ESORICS 2020) that moving
from a secret-sharing scheme over Fp to a secret sharing over an elliptic
curve group G of order p can be done non-interactively by multiplying
the share unto a generator of G. We generalize this idea an show that it
can also be used to compute arbitrary bilinear maps and in particular
pairings over elliptic curves.

We present several practical applications using our techniques: First
we show how to securely realize the Pointcheval-Sanders signature scheme
(CT-RSA 2016) in MPC. Second we present a construction for dynamic
proactive secret-sharing which outperforms the current state of the
art from CCS 2019. Third we present a construction for MPC input
certification using digital signatures that we show experimentally to
outperform the previous best solution in this area. Finally, we also show
alternative ways of encoding and decoding secret-shared data to and
from Fp and G.

69
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5.1 Introduction

A (t, n)-secure secret-sharing scheme allows a secret to be distributed into n
shares in such a way that any set of at most t shares are independent of the
secret, but any set of at least t+ 1 shares together can completely reconstruct
the secret. In linear secret-sharing schemes (LSSS), shares of two secrets can be
added together to obtain shares of the sum of the secrets. A popular example of
a (n−1, n)-secure LSSS is additive secret sharing, whereby a secret s ∈ Fp (here
Fp denotes integers modulo a prime p) is secret-shared by sampling uniformly
random s1, . . . , sn ∈ Fp subject to s1 + · · ·+sn ≡ s mod p. Another well-known
example of a (t, n)-secure LSSS is Shamir secret sharing [135] that distributes
a secret s ∈ Fp by sampling a random polynomial f(x) over Fp of degree at
most t such that f(0) = s, and where the i’th share is defined as si = f(i).

Linear secret-sharing schemes are information-theoretic in nature: they do
not rely on any computational assumption and therefore tend to be very efficient.
Furthermore, they are widely used in multiple applications like distributed
storage [76] or secure multiparty computation [49]. Linear secret-sharing
schemes can be augmented with techniques from public-key cryptography,
such as elliptic-curve cryptography. As an example, consider (a variant of)
Feldman’s scheme for verifiable secret sharing1 [71]: To distribute a secret
s ∈ Fp, the dealer samples a polynomial of degree at most t such that f(0) = s,
say f(x) = s+ r1x+ · · ·+ rtx

t, and sets the i-th share to be si = f(i). On top
of this, the dealer publishes s ·G, r1 ·G, . . . , rt ·G, where G is a generator of
an elliptic-curve group G of order p for which the discrete-log problem is hard.
Each party can now detect if its share si is correct by computing si · G and
checking that it equals s ·G+ i1(r1G) + i2(r2G) + · · ·+ it(rtG).

Similar approaches have also been used to instantiate polynomial commit-
ments [101], or to securely compute ECDSA signatures [56, 138]. The key idea
behind these techniques is that the group G, having order p, is homomorphic to
Fp as an additive group. A linear secret sharing scheme over Fp, that satisfies
some kind of “homomorphism” mod p, can therefore seen to be “compatible”
with arithmetic over G as well. This interaction enables applications that ex-
ploit primitives that require computational assumptions, like commitments or
signatures, together with efficient distributed information-theoretic techniques
of linear secret sharing.

In this work we formalize and generalize the above notion by using an
adequate mathematical definition of LSSS, extending it to general vector spaces,
of which elliptic curves are particular cases, and using linear transformations
between these vector spaces to convert from one secret-shared representation
to a different one. We extend this notion and show how generic multiplication
triples over Fp can be used to securely compute general bilinear maps, of which

1A verifiable secret-sharing scheme is one in which parties can verify that the dealer
shared the secret correctly
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bilinear pairings are a particular case. Our techniques neatly generalize those
used in some prior work like [56, 138] and we present several applications
that demonstrate how our techniques can be used to obtain protocols that
outperform current state-of-the-art.

Our Contributions

The contributions made in this work are summarized here. This listing also
serves as an overview of the rest of the paper.

• We introduce the concept of linear secret-sharing homomorphism
(LSS homomorphisms) which can be seen as a generalization formaliza-
tion of the idea of “putting the share in the exponent”. An adequate
mathematical foundation for LSS homomorphisms is presented, and we
show how generic multiplication triples can be used to compute securely
any bilinear map. This is done in Section 5.2.

• We demonstrate how LSS homomorphisms permits computation of scalar
products, thus showing that it generalizes previously used techniques
in e.g., [56, 138]. We furthermore show that it is possible to use our
techniques to compute bilinear pairings over secret-shared data using any
secure computation protocol. In Section 5.3 this is done, where the first
part shows how to compute scalar multiplications and bilinear pairings,
and where the second part shows how to instantiate our techniques with
various popular secret-sharing schemes.

• To illustrate the usefulness of our LSS homomorphisms, we provide 3
applications. The first of these is a demonstration of how digital signatures
can be computed and verified on secret-shared data. This is done in
Section 5.4.

• Our second application demonstrates a protocol for dynamic proactive
secret-sharing (PSS). This uses the digital signatures and the result is a
dynamic PSS protocol with better communication complexity than the
current state of the art. This is done in Section 5.5.

• Our final application is input certification. We present a method for
verifying that a certain party provided input to a secure computation
that was previously certified by a trusted party. We benchmark our
protocol experimentally and show that it outperforms the previous best
solution for input certification for any number of parties. The protocol is
presented in Section 5.6, and our experiments are presented in Section
5.7.

• Our LSS Homomorphisms can be viewed as a way of encoding a value
from Fp in G; however they unfortunately do not permit efficient decoding.
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We therefore present a method that permits both efficient encoding and
decoding in MPC between Fp and G. Due to space constraints, this is
presented in Appendix 5.7.

Related Work

Previous works [56, 138] make use of the folklore idea of “putting the shares in
the exponent” to efficiently instantiate threshold ECDSA, among other things.
They approach the problem from a more practical point of view, using certain
specific protocols and focusing on the application at hand, whereas our work is
more general, applying to any linear secret-sharing scheme and also any vector
space homomorphism. Furthermore, these works did not consider the case of
cryptographic pairings, as these are not needed in the ECDSA algorithm.

Multiple works have addressed the problem of proactive secret-sharing. It
was originally proposed in [93, 121], and several works have built on top of these
techniques [18, 19, 94, 113, 134], including ours. Among these, the closest to
our work is the state-of-the-art [113], which also makes use of pairing-friendly
elliptic curves to ensure correctness of the transmitted message. However, a
crucial difference is that in their work, a commitment scheme based on elliptic
curves, coupled with the technique of “putting the share in the exponent” is
used to ensure each player individually behaves correctly. Instead, in our work,
we use elliptic curve computation on the secret rather than on the shares, which
reduces the communication complexity, as shown in Section 5.5.

Finally, not many works have been devoted to the important task of input
certification in MPC. For general functions, the only works we are aware of
are [25, 26, 102, 146]. Among these, only [26] tackles the problem from a more
general perspective, having multiple parties and different protocols. In [26], the
concept of signature schemes with privacy is introduced, which are signatures
that allow for an interactive protocol for verification, in such a way that the
privacy of the message is preserved. The authors of [26] present constructions
of this type of signatures, and use them to solve the input certification problem.
However, the techniques from [26] differ from ours at a fundamental level: Their
protocols first computes a commitment of the MPC inputs, and then engage
in an interactive protocol for verification to check the validity of these inputs.
Furthermore, these techniques are presented separately for two MPC protocols:
one from [58] and one from [59]. Instead, our results apply to any MPC
protocol based on linear secret-sharing schemes, and moreover, is much simpler
and efficient as no commitments, proofs of knowledge, or special verification
protocol are needed.

5.2 LSS Homomorphisms and Bilinear Maps

Let F be a prime field of order p. We use a ∈R A to represent that a is sampled
uniformly at random from the finite set A.
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Linear Secret Sharing

In this section we define the notion of linear secret sharing that we will use
throughout this paper. Most of the presentation here can be seen as a simplified
verision of [50, Section 6.3], but it can also be regarded as a generalization
since we consider arbitrary vector spaces.

Definition 1. Let F be a field. A linear secret sharing scheme (LSSS) S over
V for n players is defined by a matrix M ∈ Fm×(t+1), where m ≥ n, and a
function label : {1, . . . ,m} → {1, . . . , n}. We say M is the matrix for S. We
can apply label to the rows of M in a natural way, and we say that player
Plabel(i) owns the i-th row of M . For a subset A of the players, we let MA be
the matrix consisting of the rows owned by players in A.

To secret-share a value s ∈ V , the dealer samples uniformly at random a
vector rs ∈ V t+1 such that its first entry is s, and sends to player Pi each row
of M · rs owned by this player. We write Js, rsK for the vector of shares M · rs,
or simply JsK if the randomness vector rs is not needed. Observe that the
parties can obtain shares of s1 + s2 from shares of s1 and shares of s2 by locally
adding their respective shares. We denote this by Js1 + s2K = Js1K + Js2K.

The main properties of a secret sharing scheme are privacy and reconstruc-
tion, which are defined with respect to an access structure. In this work, and
for the sake of simplicity, we consider only threshold access structures. That
said, our results generalize without issue to more general access structures as
well.

Definition 2. An LSSS S = (M, label) is (t, t+1)-secure if the following holds:

• (Privacy) For all s ∈ V and for every subset A of players with |A| ≤ t,
the distribution of Mrs is independent of s

• (Reconstruction) For every subset A of players with |A| ≤ t there is a
reconstruction vector eA ∈ FmA such that eᵀA(MArs) = s for all s ∈ V .

LSS over Vector Spaces

Let V be a finite-dimensional F-vector space, and let S = (M, label) be an
LSSS over F. Since V is isomorphic to Fk for some k, we can use the LSSS S
to secret-share elements in V by simply sharing each one of its k components.
This is formalized as follows.

Definition 3. A linear secret-sharing scheme over a finite-dimensional F-
vector space V is simply an LSSS S = (M, label) over F. To share a secret
v ∈ V , the dealer samples uniformly at random a vector rv ∈ V t+1 such that
its first entry is v, and sends to player Pi each row of M · rv ∈ V m owned by
this player. Privacy properties are preserved. To reconstruct, a set of parties A
with |A| > t uses the reconstruction vector eA as eᵀA(MArv) = v.
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As before, given v ∈ V we use the notation Jv, rvKV , or simply JvKV , to
denote the vector in V m of shares of v.

LSS Homomorphisms

Let U and V be two finite-dimensional F-vector spaces, and let φ : V → U be
a vector-space homomorphism. According to the definition in Section 5.2, any
given LSSS S = (M, label) over F can be seen as an LSSS over V or over U .
However, the fact that there is a vector-space homomorphism from V to U
implies that, for any v ∈ V , the parties can locally get Jφ(v)KU from JvKV . We
formalize this below.

Definition 4. Let U and V be two finite-dimensional F-vector spaces, and let
φ : V → U be a vector-space homomorphism. Let S = (M, label) be an LSSS
over V . We say that the pair (S, φ) is a linear secret-sharing homomorphism.

The following simple proposition illustrates the value of considering LSS
homomorphisms.

Proposition 2. Let U and V be two finite-dimensional F-vector spaces, and
let (S, φ) be a LSS homomorphism from U to V . Given v ∈ V and Jv, rvKV ,
applying φ to each share leads to Jφ(v), φ(rv)KU .2

Proof. Observe that φ (Jv, rvKV ) = φ(Mrv) = Mφ(rv) = Jφ(v), φ(rv)KU .

LSSS with Bilinear Maps

In Section 5.2 we saw how the parties could locally convert from sharings in one
vector space to another vector space, provided there is a linear transformation
between the two. The goal of this section is to extend this to the case of bilinear
maps. More precisely, let U, V,W be F-vector spaces of dimension d,3 and let
S = (M, label) be an LSSS over F. From Section 5.2, S is also an LSSS over U ,
V and W . Let φ : U × V →W be a bilinear map, that is, the functions φ(·, v)
for v ∈ V and φ(u, ·) for u ∈ U are linear.

We show how the parties can obtain Jφ(u, v)KW from JuKU and JvKV , for
u ∈ U and v ∈ V . Unlike the case of a linear transformation, this operation
requires communication among the parties. Intuitively, this is achieved by using
a generalization of “multiplication triples” to the context of bilinear maps. At
a high level, the parties preprocess “bilinear triples” (JαKU , JβKV , Jφ(α, β)KW )
where α ∈ U and β ∈ V are uniformly random, open δ = u− α and ε = v − β,

2We extend the definition of φ to operate on vectors over V pointwise.
3It is not necessary for these spaces to have the same dimension, but we assume this for

simplicity in the notation.
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and compute Jφ(u, v)KW as

φ(δ, ε) + φ(δ, JβKV ) + φ(JαKU , ε) + Jφ(α, β)KW = Jφ (δ + α, ε+ β)KW
= Jφ (u, v)KW .

Appendix 5.7 formalizes this intuition and defines a protocol Πbilinear parame-
terized by the map φ, which takes as input JuKU , JvKV and outputs JwKW with
w = φ(u, v).

5.3 Instantiations

In the previous section we developed a theory for LSS homomorphisms and
secure computation for bilinear maps based on an arbitrary linear secret sharing
scheme and an arbitrary linear transformation between vector spaces. In this
section we instantiate the vector spaces with elliptic curves, and the bilinear
maps with cryptographic pairings, which allows us to securely evaluate crypto-
graphic primitives based on elliptic curves and pairings. Moreover, we provide
an exact description of how to instantiate the secret-sharing scheme using
different types of sharings. In particular additive secret-sharing with MACs
(as in SPDZ [59]); Shamir secret-sharing used in honest majority protocols [58];
and replicated secret-sharing which is particularly efficient for the special case
of 3 parties and 1 corruption [8].

Instantiating the Vector Spaces with Elliptic Curves

Let G be an elliptic curve group of order a prime p, which in particular means
that G is an F-vector space, and let G be a generator of G. Consider the
isomorphism φ : F → G given by x 7→ x · G. Let S = (M, label) be an LSSS
over F. Given what we have seen so far, S can be seen as an LSSS over G. To
secret-share a curve point P ∈ G, the dealer samples random points (P1, . . . , Pt),
computes (Q1, . . . , Qm)ᵀ = M · (P, P1, . . . , Pt)

ᵀ ∈ Gm, and sends Qi to party
Plabel(i). Furthermore, if s ∈ F is secret shared as JsK, the LSS homomorphism
property applied to φ implies that each party can locally multiply its share by
the generator G to obtain Js ·GKG.

Now, consider the scalar multiplication map f : F × G → G given by f :
x, P 7→ x ·P . Using ΠBilinear with f we can obtain the protocol ΠScalarMult (more
precisely, ΠScalarMult is a special case of ΠBilinear when the LSS homomorphism
is f and the dimensions of the inputs are 1), described below, which computes
a scalar multiplication between a scalar and point when both scalar and point
are secret-shared. We remark that this protocol was presented in [138] and
as such our presentation here can be considered as illustrating that ΠBilinear

generalizes the techniques in their work. We assume access to a triple pre-
processing functionality FMultTriple that produces (JaK, JbK, Ja·bK), where a, b ∈ F
are uniformly random.
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Protocol 1 Protocol ΠScalarMult

Inputs: JxK and JP KG

Outputs: Jx · P KG
Offline Phase:

1. Parties call (JaK, JbK, Ja · bK)← FMultTriple.

2. Parties use the LSS homomorphism x 7→ x ·G for a generator G of
G to compute JBKG = JbK ·G and JCK = Ja · bK ·G.

Online Phase:

1. Parties open d← JxK− JaK and Q← JP KG − JBKG.

2. Using the LSS homomorphism, parties compute JEKG = JaK ·Q and
JF KG = d · JBKG.

3. Parties compute locally Jx · P KG = JEKG + JF KG + d ·Q+ JCKG.

Bilinear Pairings

Consider G1,G2,GT elliptic curve groups of order a prime p. As usual in the
field of pairing-based cryptography, we use additive notation for the groups
G1,G2, and multiplicative notation for GT . We denote by 0G1 , 0G2 and 1GT

the
identities of G1,G2 and GT , respectively. Consider a pairing e : G1×G2 → GT

satisfying:

1. For all G ∈ G1, H ∈ G2 and a, b ∈ F, e(aG, bH) = e(G,H)ab.

2. For P1 ∈ G1, P2 ∈ G2 with P1 6= 0, P2 6= 0, e(P1, P2) 6= 1.

3. The map e can be computed efficiently.

This notation will be used for the rest of the paper. In the context of Section
5.2, the groups G1,G2,GT can be viewed as F-vector spaces of dimension 1, so
we can apply the techniques presented there to compute Je(P1, P2)KGT

from
JP1KG1 and JP2KG2 . We summarize the resulting protocol below. We let G1

and G2 denote generators of G1 and G2, respectively.

Protocol 2 Protocol ΠPairing

Inputs: JP1KG1 and JP2KG2 .

Output: Je(P1, P2)KGT
.
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Offline Phase:

1. The parties call (JaK, JbK, Ja · bK)← FMultTriple.

2. The parties use the LSS homomorphisms x 7→ x ·G1 and x 7→ x ·G2 to
locally compute JQ1KG1 = JaK ·G1 and JQ2KG2 = JbK ·G2, respectively.

3. Using the LSS homomorphism x 7→ e(G1, G2)x, the parties compute
Je(Q1, Q2)K = Je(a ·G1, b ·G2)KGT

← e(G1, G2)JabK

Online Phase:

1. The parties open D1 ← JP1KG1 − JQ1KG1 and D2 ← JP2KG2 − JQ2KG2

2. The parties use the LSS homomorphism e(Q1, ·) to compute
Je(D1, Q2)KGT

← e(D1, JQ2KG1), and similarly they use the LSS
homomorphism e(·, D2) to compute Je(Q1, D2)KGT

← e(JQ1KG1 , D2).

3. The parties compute locally and output Je(P1, P2)KGT
= e(D1, D2) ·

Je(D1, Q2)KGT
· Je(Q1, D2)KGT

· Je(Q1, Q2)KGT
.

Instantiating the Secret Sharing Schemes

We present multiple linear secret-sharing schemes, together with their instanti-
ations over elliptic curves. We remark that this is for the sake of concreteness,
but they can be instantiated over any finite-dimensional vector space V over F.

Additive SS. In this scheme each party Pi gets a uniformly random value
ri ∈ F subject to

∑n
i=1 ri = s, where s ∈ F is the secret. This scheme is

(n − 1, n)-secure. Let us denote additive secret sharing of s by JsKadd and,
abusing notation, we write JsKadd = (r1, . . . , rn), where each ri is the share of
party Pi. Given an elliptic curve group G of order p with generator G, the
parties can obtain shares of s · G by locally multiplying the generator G by
their share ri; that is, Js ·GKadd = (r1 ·G, . . . , rn ·G).

In the scheme above, at reconstruction time, a maliciously corrupt party
can lie about its share, causing the reconstructed value to be incorrect. To
help solve this issue, actively secure protocols in the dishonest majority setting
share a secret s as JsKadd, together with Jr · sKadd, where r is a global uniformly
random value that is also shared as JrKadd. We denote this by JsKadd∗. At
reconstruction time, the adversary may open JsKadd to s+ δ where δ is some
error known to the adversary. To ensure that δ = 0 (i.e., the correct value was
opened), the parties compute (s + δ)JrKadd − Jr · sKadd, open this value, and
check it equals 0. It can be easily shown that, if δ 6= 0, this check passes with
probability at most 1/|F|.
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The same check can be performed over G: The sharings Js · GKaddG are
accompanied by Jr · s ·GKaddG , where r is a global uniformly random value that
is also shared as JrKadd. At reconstruction time Js · GKaddG can be opened to
(s+ δ) ·G, and to ensure δ = 0 the parties open JrKaddG · (s+ δ) ·G− Jr · s ·GKaddG
and check that this point is the identity. It is easy to see that, like in the case
over F, the check passes with probability at most 1/|F| if δ 6= 0. We denote
this “robust” sharing of s ·G by Js ·GKadd∗G .

Shamir SS. Let F≤d[x] be the ring of polynomials over F of degree at most d.
Consider a setting with n parties, and let 0 < t < n. In this scheme each party
Pi gets f(i) where f(x) ∈R F≤t[x]. We denote JsKshmF = (f(1), . . . , f(n)). Recall
that s can be reconstructed from t shares by computing s =

∑t+1
i=1 λisi where

si is the i’th share, and where λi is the i’th Lagrange coefficient. This works as
well when reconstructing Js ·GKG since s ·G =

∑t+1
i=1 λi(si ·G) = (

∑t+1
i=1 λisi) ·G.

In Section 5.7 in the Appendix we present a more detailed description of
this scheme for any vector space, together with protocols for instantiating a
generalized version of the functionality FDotProduct defined below.

Replicated SS. This is a (1, 2)-secure LSSS for 3 parties. In this scheme
each party Pi gets (ri, ri+1) with s = r1 + r2 + r3, and where s ∈ F is the secret.
(We interpret r4 = r1, i.e., indices “wrap” modulo 3.) Reconstructing, as well
as active security, follows from the same arguments as presented for case of
additive secret-sharing.

Primitives. For the rest of the paper, we will rely on several secure computa-
tion functionalities. We list them here in brief. Also, for a functionality/protocol
Fabc/Πabc, we denote by Cabc its total communication cost, in bits.

• FMultTriple outputs a triple (JaK, JbK, JcK) where c = ab.

• FDotProduct∗ takes as input (JxiK)Li=1 and (JyiK)Li=1, and produces Jz + δK,
where z =

∑L
`=1 φ(x`y`) and δ ∈ F is an error known by the adversary.

FDotProduct is similar, except it does not accept such error.

• FMult takes two inputs JxK and JyK, and outputs JwK where w = xy. FMult

is a particular case of FDotProduct for L = 1.

• FRand(K) outputs JxK where x ∈ K, where K is a F-vector space. Notice
that it is enough to have a functionality which samples a secret-shared field
element; to get a secret point, parties can locally apply an appropriate
LSS homomorphism to obtain a secret-shared group element.

• FCoin(K) outputs a uniformly random s ∈ K to all parties.
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5.4 Digital Signatures in MPC

In this section we show how our techniques can be used to securely sign and
verify messages that are secret shared, using keys that are similarly secret-
shared. More precisely, we present here three protocols: First, a key generation
protocol ΠKeygen for generating (pk, JskK) securely where pk is a public key and
JskK a secret-shared private key. Second, a signing protocol ΠSign protocol that
on input a secret shared message JmK and JskK output from ΠKeygen outputs
JσK where σ is a signature on m under sk. Finally, we present a verification
protocol ΠVerify which on input JmK, JσK and pk outputs JbK where b is a value
indicating whether or not σ is a valid signature on m under the private key
corresponding to the public key pk.

We choose to use the signature scheme [126] by Pointcheval and Sanders
(henceforth PS) as our starting point. The primary reason for choosing the
PS scheme is that signatures are short and independent of the message length,
and that messages do not need to be hashed prior to signing. Interestingly,
computing PS signatures securely leads to a number of optimizations that are
made possible since e.g., the secret key is not known by any party.

The PS Signature Scheme

The PS signature scheme signs a vector of messages ~m ∈ Fr as follows (we
present the multi-message variant here):

• Setup(1λ): Output pp← (p,G1,G2,GT , e), a type-3 pairing.

• Keygen(pp): Select random H ← G2 and (x, y1, . . . , yr) ← Fr+1. Com-
pute (X,Y1, . . . , Yr) = (xH, y1H, . . . , yrH) set sk = (x, y1, . . . , yr) and
pk = (H,X, Y1, . . . , Yr).

• Sign(sk, ~m): Select random G ← G1 \ {0} and output the signature
σ = (G, (x+

∑r
i=1miyi) ·G).

• Verify(pk, ~m, σ): Parse σ as (σ1, σ2). If σ1 6= 0 and e(σ1, X +
∑
miYi) =

e(σ2, H) output 1. Otherwise output 0.

The remainder of this section will focus on how to instantiate the PS
signature scheme securely.

Distributed PS Signatures

The ΠKeygen protocol presented below shows how to generate keys suitable for
signing messages of r blocks. The protocol proceeds as follows: parties invoke
FCoin and FRand a suitable number of times to generate the private key and
then use an appropriate LSS homomorphism to compute the public key.
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Protocol 3 Protocol ΠKeygen

Inputs: pp = (p,G1,G2,GT , e), r.

Outputs: (pk, JskK).

1. Parties invoke FCoin(G2) to obtain H, and invoke FRand(F) a total of
r + 1 times to obtain (JxK, Jy1K, . . . , JyrK).

2. Let φ2 : F→ G2 be LSS-homomorphism given by φ2 : x 7→ xH. Using
φ2, compute JXKG2 = φ2(JxK) and JYiKG2 = φ2(JyiK) for i = 1, . . . , r.

3. Parties open X ← JXKG2 and Yi ← JyiKG2 for i = 1, . . . , r. Out-
put the pair (pk, JskK) where pk = (H,X, Y1, . . . , Yr) and JskK =
(JxK, Jy1K, . . . , JyrK).

The communication complexity of ΠKeygen is CKeygen = CCoin(1) + CRand(r +
1) + COpen(r + 1) field elements.

Next up is computing Sign on secret-shared inputs given the tools we have
described so far. The ΠSign protocol below outputs a signature (σ1, Jσ2KG1).
The reasons for keeping σ1 is (1) that it simplifies things when we use this later,
and (2) makes signing more efficient. If, however, σ1 cannot be revealed then
ΠPairing is needed for step 3.

Protocol 4 Protocol ΠSign

Inputs: JskK = (JxK, Jy1K, . . . , JyrK), J~mK = (Jm1K, . . . , JmrK).

Outputs: JσK

1. Parties obtain σ1 ∈R G1 by invoking FCoin(G1). If σ1 = 0, repeat
this step.

2. Parties invoke JzK← FDotProduct ((JyiK)ri=1, (JmiK)ri=1) and then com-
pute JwK = JxK + JzK.

3. Parties use the LSS homomorphism x 7→ x · σ1 to compute locally
Jσ2KG1 ← ΠScalarMult(JwK, σ1).

4. Output (σ1, Jσ2KG1).

Protocol ΠSign produces a correct signature with communication complexity
CCoin(1) + CDotProduct(r). Observe that, if the secret-sharing scheme is instan-
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tiated either with Shamir or Replicated secret sharing, the communication
complexity becomes independent of r.

Remark 1. It is possible to replace FDotProduct with FDotProduct∗, which has the
effect that the output would be (σ1, Jσ2 + δKG1) where δ is an error introduced
by the adversary. For the application in Section 5.5 this is acceptable, and thus
desirable as FDotProduct∗ is often more efficient.

Finally, we show verification. The verification protocol ΠVerify ouputs a
secret-shared GT element JbKGT

where b = 1GT
if an only if the signature was

valid. While this is not a bit, it nevertheless carries the same information.
Below the signature we verify is (σ1, Jσ2KG1), however if this is not the case (in
particular, if σ1 is secret-shared) then ΠPairing is needed in step 4.

Protocol 5 Protocol ΠVerify

Inputs: pk = (H,X, Y1, . . . , Yr), J~mK = (JmiK)ri=1, σ = (σ1, Jσ2KG1).

Outputs: JbKGT
= J1GT

K if Verify(pk, ~m, σ) = 0 and a random value
otherwise.

1. If σ1 = 0 then output JµKGT
← FRand(GT ).

2. Compute JαKGT
= e(Jσ2K, H) using the LSS Homomorphism x 7→ xH.

3. Locally compute JβKGT
= e(σ1, X +

∑r
i=1JmiKYi) using LSS homo-

morphisms.

4. Output JbKGT
← ΠScalarMult(JρK, JαKGT

/JβKGT
) where JρK was ob-

tained by invoking FRand.

The communication complexity of the ΠVerify protocol is CRand(1)+CScalarMult(1).
We now argue security.

Lemma 6. Protocol ΠVerify outputs a secret-sharing of 1 if σ = (σ1, Jσ2KG1) is
a valid signature on J~mK with public key pk, otherwise the protocol outputs a
secret-sharing of a uniformly random element.

Lemma 6 is proven in Appendix 5.7.

5.5 Applications to Proactive Secret Sharing

Secret-sharing allows one to distribute a secret such that an adversary with
only access to some subset of the shares cannot learn anything about the
secret. However as time passes it becomes harder to argue that no leakage
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beyond this subset happens, and thus that the secret remains hidden from
the adversary. Proactive Secret-sharing (PSS) deals with this problem by
periodically “refreshing” (or proactivizing) shares such that shares between two
stages become “incompatible”.

For the special case of dynamic PSS (a PSS scheme is dynamic if the
number of parties and threshold can change between each proactivization),
CHURP is presented in [113]. In a nutshell, CHURP first performs an optimistic
proactivization and, if cheating is detected, falls back to a slower method that
is able to detect cheaters.

In what follows we show how to use the protocols for signatures developed
in Section 5.4 to obtain a conceptually simple and efficient dynamic PSS
with abort. We first develop a highly efficient protocol for proactivizing a
secret that guarantees privacy, but allows the adversary to tamper with the
transmitted secret. Then, we use our signatures to transmit a signature on
the secret, that can be checked by the receiving committee. In this way, due
to the unforgeability properties of the signature scheme, an adversary cannot
make the receiving committee accept an incorrectly transmitted message. This
construction leads to a 9-fold improvement in terms of communication with
respect to the optimistic protocol from [113].

Proactive Secret Sharing

We present here the definitions of proactive secret sharing, or PSS for short.
We remark that our goal is not to provide formal definitions of these properties
but rather a high level description of what a PSS scheme is, so that we can
present in a clear manner our optimizations to the work of [113].

In a PSS scheme a set of n parties have shares of a secret JsK = (s1, . . . , sn)
with threshold t. At a given stage, a proactivization mechanism is executed,
from which the parties obtain Js′K = (s′1, . . . , s

′
n). A PSS scheme satisfies:

• (Correctness). It must hold that s = s′

• (Privacy). An adversary corrupting a set of at most t parties before the
proactivization, and also a (potentially different) set of at most t parties
after the proactivization, cannot learn anything about the secret s.

The PSS schemes we consider in this work are dynamic in that the set of
parties holding the secret before the proactivization step may be different than
the set of parties holding the secret afterwards.

Partial PSS

In what follows we denote by C = {Pi}ni=1 and C ′ = {P ′i}ni=1 the old a
new committees, respectively. Furthermore, we denote U = {Pi}t+1

i=1 and
U ′ = {P ′i}

t+1
i=1. We consider Shamir secret-sharing, as defined in Section 5.3
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with threshold t < n/2. This ensures that the parties cannot modify their
shares without resulting in an error, thanks to error-detection, as discussed in
Section 5.7 in the appendix. Our protocol ΠPartialPSS is inspired by the protocol
from [19], except that, since we do not require the transmitted message to be
correct, we can remove most of the bottlenecks like the use of hyper-invertible
matrices or consistency checks to ensure parties send shares consistently.

Protocol 6 Protocol ΠPartialPSS(JsKC)

Inputs A shared value JsKC = (s1, . . . , sn) among a committee C.

Output: Either a consistently shared value Js′KC′ or abort. If all parties
behave honestly then s′ = s.

1. Each Pi ∈ C samples si1, . . . , si,t+1 ∈R F such that si =
∑t+1

j=1 sij
and sends sij to Pj for j = 1, . . . , t+ 1.

2. Each Pi ∈ U samples rki ∈R F for k = 1, . . . , t, and sets r0,i = 0.

3. Each Pi ∈ U sets aij = sji +
∑t

k=0 rki · jk and sends aij to P ′j , for
each j = 1, . . . , n.

4. Each P ′j ∈ C ′ sets s′j :=
∑t+1

i=1 aij .

5. The parties in C ′ output the shares (s′1, . . . , s
′
n).

Theorem 2. Protocol ΠPartialPSS satisfies the following properties.

1. The resulting sharings are consistent. Furthermore, if all the parties
behave honestly, then the underlying secret is the same as provided as
input.

2. An adversary simultaneously controlling t parties in C and t parties in
C ′ does not learn anything about the secret input s.

A proof of Theorem 2 can be found in Appendix 5.7.
ΠPartialPSS can be extended to proactivize shares JαKCG , where G is an elliptic

curve group by running the same protocol “in the exponent”. More formally,
the LSS homomorphism x 7→ x ·G, where G is a generator of G, is used.

Communication Complexity. ΠPartialPSS communicates a total of n(n+ 1)
field elements.
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Simple and Efficient PSS with Abort

The protocol ΠPartialPSS presented in the previous section guarantees privacy
and consistency of the new sharings, but it does not satify the main property of
a PSS, which is guaranteeing that the secret remains the same. More precisely,
a malicious party may disrupt the output as Js + γKC′ ← ΠPartialPSS(JsKC),
where γ is some value known by the adversary. This is of course not ideal, but
it can be fixed by making use of the signature protocols proposed in Section 5.4.
In a nutshell, the committee C uses ΠPartialPSS to send to C ′ not only the secret
s, but also a signature on this secret using a secret-key shared by C. Then,
upon receiving shares of the message-signature pair, the parties in C ′ proceed
to verifying this pair securely using C’s public key, and if this check passes
then it can be guaranteed that the message was correct, since the adversary
cannot produce a valid message-signature pair for a new message.

The protocol is presented more formally in Protocol ΠPSS below.

Protocol 7 Protocol ΠPSS(JsKC)

Inputs A shared value JsKC = (s1, . . . , sn) among a committee C.

Output: Consistent shares JsKC′ or abort.
Setup: Parties in C have a shared secret-key JskCKC , and its corresponding
public key pkC is known by the parties in C ′.4

1. Parties in C call (σ1, Jσ2KC)← ΠSign(JskCKC , JsKC).

2. Parties in C ∪ C ′ call Js′KC′ ← ΠPartialPSS(JsKC) and Jσ′2K
C′ ←

ΠPartialPSS(Jσ2KC).

3. P1, . . . , Pt+1 all send σ1 to the parties in C ′. If some party in Pj ∈ C ′
receives two different σ1 from two different parties, then the parties
abort.

4. Parties in C ′ call v ← ΠVerify(Js′KC
′
, (σ1, Jσ′2K

C′), pkC). If v = 0 then
the parties in C ′ output Js′KC′ . Else, they abort.

Intuitively, the protocol guarantees that the parties do not abort if and only
if the message is transmitted correctly. This follows from the unforgeability of
the signature scheme: If an adversary can cause the parties to accept with a
wrong message/signature pair, then this would constitute a forged signature.
The fact that privacy is maintained regardless of whether the parties abort or
not is more subtle, but essentially follows from the fact that decision to abort
can be shown to independent of the secret (thus ruling out a selective failure
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attack). Put differently, a decision depends only on the error introduced by
the adversary which is independent of the secret.

We summarize these properties in Theorem 3 below which we prove in
Appendix 5.7. In our proof we do not reduce to the unforgeability of the
signature scheme, but instead to a hard problem over elliptic curves directly.
This is easier and cleaner in our particular setting, given that the signatures are
produced and checked within the same protocol. The computational problem
we reduce the security of Protocol ΠPSS to is the following, which can be seen
as a natural variant of Computational Diffie-Hellman (CDH) problem over G1.

Definition 5 (co-CDH assumption). Let G ∈ G1 and G′ ∈ G2 be generators.
Given (G,G′, aG, bG′) for a, b,∈R F, an adversary cannot efficiently find (ab)G.

With this assumption at hand, which is assumed to hold for certain choices
of pairing settings (see [73]), we can prove the following about the security of
ΠPSS.

Theorem 3. Protocol ΠPSS instantiates the PSS-with-abort functionality de-
scribed in Section 5.5, that is, if the parties do not abort in the protocol ΠPSS,
then the parties in C ′ have shares JsKC′ , where JsKC was the input provided to
the protocol. Furthermore, privacy of s is satisfied regardless of whether the
parties abort or not.

If multiple shared elements Js1KC , . . . , JsLKC are to be proactivized, we
can make use of the fact that the signature scheme described in Section 5.4
allows for cheap signing and verification of long messages without penalty in
communication. Further optimizations are presented in Appendix 5.7.

Communication Complexity. The communication complexity of the ΠPSS

protocol is CPSS(L+ 1) + CSign(L) + CVerify(L). Recall that CSign(L) = CCoin(1) +
CDotProduct(L), and CVerify(L) = CRand(1) + CScalarMult(1) For the case of Shamir
secret sharing, CRand(1) = 2n log |F|, using the protocol from [58] and amor-
tizing over multiple calls to FRand. Also, CDotProduct(L) = 5.5n log |F|, and
CScalarMult(1) = 5.5n log |F| too, using the specialized bilinear protocol Πshm

DotProduct

for Shamir SS described in Section 5.7. We ignore the cost CCoin(1) since it can
be instantiated non-interactively using a PRG.

Given the above, the total communication complexity of the ΠPSS protocol
is

log(|F|) · ((L+ 1) · n · (n+ 1) + 13n) bits.

Comparison with CHURP. The dynamic PSS protocol proposed in [113],
is to our knowledge state-of-the-art in terms of communication complexity. At
a high level, CHURP is made of two main protocols, Opt-CHURP, which is
able to detect malicious behavior during the proactivization but is not able
to point out which party or parties cheated, and Exp-CHURP, which performs
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proactivization while enabling cheater detection at the expense of requiring
more communication. Since in this work we have described a PSS protocol
with abort, we compare our protocol against Opt-CHURP.

The total communication complexity of Opt-CHURP is 9Ln2 log |F| bits in
point-to-point channels, plus 256n bits over a blockchain,5 so our novel method
presents a 9-fold improvement over the state of the art. Furthermore, although
not mentioned in our protocol, a lot of the communication that appears in
the 13n term in our ΠPSS protocol can be regarded as preprocessing, that is,
it is independent of the message being transmitted and can be computed in
advance, before the proactivization phase.

Finally, we note that our novel protocol ΠPSS is conceptually much more
simple than Opt-CHURP. Unlike in Opt-CHURP, our protocol does not re-
quire the expensive use of commitments and proofs at the individual level
(i.e. per party) in order to ensure correctness of the transmitted value. Instead,
we compute a global signature of the secret and check its validity after the
proactivization.

5.6 Applications to Input Certification

MPC does not put any restriction on what kind of inputs are allowed, yet such
a property has its place in many applications. For example, one might want to
ensure that the two parties in the millionaires problem do not lie about their
fortunes.

Signatures seem like the obvious candidate primitive for certifying inputs
in MPC: A trusted party T will sign all inputs xi of party Pi that need
certification. Then, after Pi have shared its input Jx′iK, which it may change if
it is misbehaving, parties will verify that Jx′iK is a value that was previously
signed by T . While this approach clearly works (if Pi could get away with
sharing x′i, then Pi produced a forgery) it is nevertheless hindered by the fact
that signature verification is expensive to compute on secret-shared values,
arising from the fact that the usual first step in verifying a signature is hashing
the message, which is prohibitely expensive in MPC. In this section we show
that by using our secure PS signatures from Section 5.4, this approach is not
longer infeasible, and in fact, it is quite efficient.

Certifying inputs with PS signatures

We consider a setting in which n parties P1, . . . , Pn wish to compute a function
f(x1, . . . ,xn), where xi ∈ FL corresponds to the input of party Pi. We assume
that all parties hold the public key pk of some trusted authority T , who
provided each Pi with a PS signature (σi1, σ

i
2) on its input xi. We also assume

a functionality FInput that, on input xi from Pi, distributes to the parties
5For a more detailed derivation of this complexity, see Section 5.7 in the appendix.
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consistent shares Jxi1K, . . . , JxiLK. We also assume the existence of a broadcast
channel.

Our protocol, ΠCertInput, allows a party Pi to distribute shares of its input,
only if this input has been previously certified.

Protocol 8 Protocol ΠCertInput

Input: Index i ∈ {1, . . . , n} and
(
(xi)

L
i=1, σ1, σ2

)
from Pj .

Output: (JxiK)i where Verify(pk, (JxiKi), (σ1, σ2)) = 1, or abort.

1. Pj calls FInput to distribute ((JxiK)i, Jσ2KG1). Also, Pj broadcasts σ1

to all parties.

2. Parties call JrKGT
← ΠVerify(pk, (JxiK)Li=1, σ1, Jσ2KG1).

3. Parties open JrKGT
, who output (JxiK)i if r = 1GT

and abort otherwise.

The security of the protocol follows seamlessly from the unforgeability of
the PS signatures, proven in [126]. Optimizations are discussed in 5.7.

Complexity analysis. The communication complexity of the protocol ΠCertInput

is CInput(L) + CVerify(L) + COpen(1) bits.

5.7 Implementation and Benchmarking

We implemented our protocols with the RELIC toolkit [10] using the pairing-
friendly BLS12-381 curve. This curve has embedding degree k = 12 and a
255-bit prime-order subgroup, and became popular after it was adopted by the
ZCash cryptocurrency [24]. It is now in the process of standardization due
to its attractive performance characteristics, including an efficient towering of
extensions, efficient GLV endomorphisms for scalar multiplications, cyclotomic
squarings for fast exponentiation in GT , among others. In terms of security,
the choice is motivated by recent attacks against the DLP in GT [106] and
are supported by the analysis in [115]. Our implementations make use of
all optimizations implemented in RELIC, including Intel 64-bit Assembly
acceleration, and extend the supported algorithms to allow computation of
arbitrarily-sized linear combinations ofG2 points through Pippenger’s algorithm.
We take special care to batch operations which can performed simultaneously,
for example merging scalar multiplications together or combining the two pairing
computations within MPC signature verification as a product of pairings. We
deliberately enabled the variable-time but faster algorithms in the library
relying on the timing-attack resistance built in MPC, since computations will
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Operation Local (cc) Two-party (cc)

Scalar multiplication in G1 386 840
Scalar multiplication in G2 1,009 2,417
Exponentiation in GT 1,619 4,483
Pairing computation 3,107 4,063

PS key generation (1 msg) 2,670 4,723
PS signature computation (1 msg) 626 532
PS signature verification (1 msg) 5,153 11,514

PS key generation (10 msgs) 11,970 23,464
PS signature computation (10 msgs) 656 532
PS signature verification (10 msgs) 11,131 16,216

Table 5.1: Efficiency comparison between local computation and two-party
computation of the main operations in pairing groups and PS signature com-
putation/verification. We display execution times in 103 clock cycles (cc) for
each of the main operations in the protocols and report the average for each of
the two parties.

be performed essentially over ephemeral data. The resulting code will be
contributed back to the library.

We benchmarked our implementation on an Intel Core i7-7820X Skylake
CPU clocked at 3.6GHz with HyperThreading and TurboBoost turned off to
reduce noise in the benchmarks. Each procedure was executed 104 times and
the averages are reported in Table 5.1. It can be seen from the table that
the MPC versions of scalar multiplications and exponentiations introduce a
computational overhead ranging from 2.17 to 2.77, while pairing computation
becomes only 30% slower. We notice that performance impact is higher for
exponentiation in GT due to a less efficient implementation in RELIC. This is
justified by the lower prevalence of such operations in pairing-based protocols
compared to operations in G1 and G2. For the PS protocol, key generation and
signature verification in MPC are penalized in comparison to local computation
approximately by a 2-factor, while the cost of signature computation stays
essentially the same. There is no performance penalty for signature computation
involving many messages because of the batching possibility in the PS signature
scheme.

Certified Inputs

Here we compare our protocol for input certification from Section 5.6 with
the experimental results reported in [26]. To perform a fair comparison, we
converted the timings from the second half of Table 2 in [26] to clock cycles using
the reported CPU frequency of 2.1GHz for an Intel Sandy Bridge Xeon E5-2620
machine. Each procedure in our implementation was executed 104 times for up
to 102 messages, after which we decreased the number of executions linearly with
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Number of messages

1 10 102 103 104 105 106

Ours 11,514 16,216 62,714 357,445 2,334,742 22,281,049 220,572,619
[26] 11,445 18,690 103,950 970,200 9,723,000 111,090,000 -

Table 5.2: Efficiency comparison between our certified input protocol from
Section 5.6 and the one presented in [26]. Numbers are measured in thousands
of clock cycles (cc).

the increase in number of messages. We used as reference the largest running
time of the two running parties (input provider and other party) reported
in [26], since the computation would be bounded by the maximum running
time. Our results are shown in Table 5.2, and show that our implementations
are competitive for small numbers of messages, but improve on related work
by a factor of 2–5 when the number of messages is at least 100. While the
two benchmarking machines are different (Intel Sandy Bridge and Skylake),
our implementations do not make use of any performance feature specific to
Skylake, such as more advanced vector instruction sets. Hence we claim that
the performance of our implementations would not be different enough in Sandy
Bridge to explain the difference, and just converting performance figures to
clock cycles makes the results generally comparable.
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Appendix to Chapter 5

Proof of Lemma 1

Proof. Suppose that (JxiKk+s, JyiKk+s, JziKk+s) is the multiplication triple corre-
sponding to the i-th multiplication gate, where JxiKk+s, JyiKk+s are the sharings
on the input wires and JziKk+s is the sharing on the output wire. We note that
the values on the input wires may not actually be the appropriate values as
when the circuit is computed by honest parties. However, in the verification
step, each gate is examined separately, and all that is important is whether
the randomized result is Jr · ziKk+s for whatever zi is here (i.e., even if an error
was added by the adversary in previous gates). By the definition of FMult,
a malicious adversary is able to carry out an additive attack, meaning that
it can add a value to the output of each multiplication gate. We denote by
δi ∈ Z2k+s the value that is added by the adversary when FMult is called with
JxiKk+s and JyiKk+s, and by γi ∈ Z2k+s the value added by the adversary when
FMult is called with the shares JyiKk+s and Jr · xiKk+s. However, it is possi-
ble that the adversary has attacked previous gates and so JyiKk+s is actually
multiplied with Jr · xi + εiK, where the value εi ∈ Z2k+s is an accumulated
error from previous gates.6 Thus, it holds that val(JziK)H = xi · yi + δi and
val(Jr · ziK)H = (r · xi + εi) · yi + γi. Similarly, for each input wire with sharing
JvmK, it holds that val(Jr · vmK)H = r · vm + ξm, where ξm ∈ Z2k+s is the value
added by the adversary when FMult is called with JrKk+s and the shared input

6Although attacks in previous gates may be carried out on both multiplications, the idea
is here is to fix xi which is shared by JxiKk+s at the current value on the wire, and then given
the randomized sharing Jx′iKk+s, define εi = x′i − r · xi as the accumulated error on the input
wire.
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JvmKk+s. Thus, we have that

val(JuK)H =

N∑
i=1

αi · ((r · xi + εi) · yi + γi)

+
M∑
m=1

βm · (r · vm + ξm) + Θ1

val(JwK)H =
N∑
i=1

αi · (xi · yi + δi) +
M∑
m=1

βm · vm + Θ2

where Θ1 ∈ Z2k+s and Θ2 ∈ Z2k+s are the values being added by the adversary
when FDotProduct is called in the verification step, and so

val(JT K)H = val(JuK)H − r · val(JwK)H =

=
N∑
i=1

αi · ((r · xi + εi) · yi + γi) +
M∑
m=1

βm · (r · vm + ξm) + θ1

− r ·

(
N∑
i=1

αi · (xi · yi + δi) +
M∑
m=1

βm · vm + Θ2

)

=

N∑
i=1

αi · (εi · yi + γi − r · δi) (1)

+
M∑
m=1

βm · ξm + (Θ1 − r ·Θ2),

where the second equality holds because r is opened and so the multiplication
r · JwKk+s always yields Jr · wKk+s. Let ∆i = εi · yi + γi − r · δi.

Our goal is to show that val(JT K)H , as shown in Eq. (2), equals 0 with
probability at most 2−s+log(s+1). We have the following cases.

• Case 1: There exists m ∈ [M ] such that ξm 6≡k 0. Let m0 be the smallest
such m for which this holds. Then val(JT K)H ≡k+s 0 if and only if

βm0 · ξm0 ≡k+s

− N∑
i=1

αi ·∆i −
M∑
m=1
m6=m0

βm · ξm − (Θ1 − r ·Θ2)

 .

Let 2u be the largest power of 2 dividing ξm0 . Then we have that

βm0 ≡k+s−u

−
∑N

i=1 αi ·∆i −
∑M

m=1
m6=m0

βm · ξm − (Θ1 − r ·Θ2)

2u

·(ξm0

2u

)−1

.
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By the assumption that ξm 6≡k 0 it follows that u < k and so k + s− u > s
which means that the above holds with probability at most 2−s, since βm0 is
uniformly distributed over Z2k+s .

• Case 2: All ξm ≡k 0. By the assumption in the lemma, some additive value
d 6≡k 0 was sent to FMult. Since none was sent for the input randomization,
there exists some i ∈ {1, . . . , N} such that δi 6≡k 0 or γi 6≡k 0. Let i0
be the smallest such i for which this holds. Note that since this is the
first error added which is 6≡k 0, it holds that εi0 ≡k 0. Thus, in this case,
val(JT K)H ≡k+s 0 if and only if αi0 ·∆i0 ≡k+s Y , where

Y =

− N∑
i=1
i 6=i0

αi ·∆i −
M∑
m=1

βm · ξm − (Θ1 − r ·Θ2)

 .

Let q be the random variable corresponding to the largest power of 2 dividing
∆i0 , where we define q = k + s in the case that ∆i0 ≡k+s 0. Let E denote
the event αi0 ·∆i0 ≡k+s Y . We have the following claims.

– Claim 1: For k < j ≤ k + s, it holds that Pr[q = j] ≤ 2−(j−k).

To see this, suppose that q = j and j > k. It holds then that ∆i0 ≡j 0,
and so ∆i0 ≡k 0. We first claim that in this case it must hold that δi0 6≡k 0.
Assume in contradiction that δi0 ≡k 0. In addition, by our assumption we
have that γi0 6≡k 0, εi ≡k 0 and ∆i0 = εi0 · yi0 + γi0 − r · δi0 ≡k 0. However,
εi · yi0 ≡k 0 and r · δi0 ≡k 0 imply that γi0 ≡k 0, which is a contradiction.

We thus assume that δi0 6≡k 0, and in particular there exists u < k, such
that u is the largest power of 2 dividing δi0 . It is easy to see then that q = j

implies that r ≡j−u
(
εi0 ·yi0+γi0

2u

)
·
(
δi0
2u

)−1
. Since r ∈ Z2k+s is uniformly

random and u < k, we have that this equation holds with probability of
at most 2−(j−u) ≤ 2−(j−k).

– Claim 2: For k < j < k + s it holds that Pr[E | q = j] ≤ 2−(k+s−j).

To prove this let us assume that q = j and that E holds. In this case

we can write αi0 ≡k+s−j
Y
2j
·
(

∆i0

2j

)−1
. For k < j < k + s it holds that

0 < k + s− j < s and therefore this equation can be only satisfied with
probability at most 2−(k+s−j), given that αi0 ∈ Z2s is uniformly random.

– Claim 3: Pr[E | 0 ≤ q ≤ k] ≤ 2−s.

This is implied by the proof of the previous claim, since in the case that
q = j with 0 ≤ j ≤ k, it holds that k + s− j ≥ s, so the event E implies

that αi0 ≡s Y
2j
·
(

∆i0

2j

)−1
, which holds with probability at most 2−s.
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Putting these pieces together, we thus have the following:

Pr [E] = Pr [E | 0 ≤ q ≤ k] · Pr[0 ≤ q ≤ k] +
k+s∑
j=k+1

Pr [E | q = j] · Pr[q = j]

≤ 2−s + s · 2−s = (s+ 1) · 2−s = 2−s+log(s+1). (2)

To sum up the proof, in the first case we obtained that T = 0 with probability
of at most 2−s whereas in the second case, this holds with probability of at
most 2−s+log(s+1). Therefore, we conclude that the probability that T = 0 in
the verification step is bounded by 2−s+log(s+1) as stated in the lemma. This
concludes the proof.

Instantiation for 3 parties

We now present in detail the efficient three party instantiation of our compiler
from replicated secret sharing. Sharing a value x ∈ Z2` is done by picking
at random x1, x2, x3 ∈ Z2` such that

∑
i xi ≡` x. Pi’s share of x is the pair

(xi, xi+1) and we use the convention that i+ 1 = 1 when i = 3. To reconstruct
a secret, Pi receives the missing share from the two other parties. Note that
reconstructing a secret is robust in the sense that parties either reconstruct the
correct value x or they abort.

Replicated secret sharing satisfies the properties described in Section 3.2,
and one can efficiently realize the required functionalities described in the same
section. Below we discuss some of these properties/functionalities.

Generating Random Shares

Shares of a random value can be generated non-interactively, as noted in
[111, 117], by making use of a setup phase in which each party Pi obtains
shares of two random keys ki, ki+1 for a pseudorandom function (PRF) F . The
parties generate shares of a random value for the j-th time by letting Pi’s
share to be (ri, ri+1), where ri = Fki(j). These are replicated shares of the
(pseudo)random value r =

∑
i Fki(j). Proving that this securely computes

FRand is straight forward and we omit the details.

Secure Multiplication up to an Additive Attack

To multiply two shared values, we use the protocol from [8, 117], which is
described in 9. The shares of 0 that this protocol needs can be obtained by
using correlated keys for a PRF, in similar fashion to the protocol for FRand

sketched above.
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Protocol 9 Secure multiplication up to an additive attack.

Inputs: Parties hold sharings JxK, JyK and additive sharings (α1, α2, α3)

where
∑3

i=1 αi = 0.

1. Pi computes zi = xiyi + xi+1yi + xiyi+1 + αi and sends zi to Pi−1.

2. Pj , upon receiving zj+1, defines its share of Jx · yK as (zj , zj+1).

The above protocol is secure up to an additive attack as noted in [111]. We
note that this can be extended to instantiate FDotProduct at the communication
cost of one single multiplication, as shown in [45].

Efficient Checking Equality to 0

Checking that a value is a share of 0 can be performed very efficiently in this
setting by relying on a Random Oracle H. The observation we rely on is that, if∑

i xi ≡` 0, then xi−1 ≡` −(xi+xi+1) and so Pi can send zi = H(−(xi+xi+1))
which will be equal to xi−1 which is held by Pi+1 and Pi−1. Since only one
party is corrupted, it suffices that each Pi will send it only to Pi+1. Upon
receiving zi from Pi, Pi+1 checks that zi = H(xi−1) and aborts if this is not
the case.

This protocol is formalized in Protocol 10 in the FRO-hybrid model. The
FRO functionality is described in Functionality 1. We remark that that this
protocol does not instantiate FCheckZero exactly. In order for the proof of
security to work, we need to allow the adversary to cause the parties to reject
also when v = 0. We denote this modified functionality by F ′CheckZero. This is
minor change since the main requirement from FCheckZero in our compiler is
that the parties won’t accept a value as 0 when it is not, which is still satisfied
by the modified functionality.

Functionality 1 FRO – Random Oracle functionality

Let M be an initially empty map.

1. On input x from a party P , if (x, y) ∈ M for some y, return y.
Otherwise pick y at random and set M = {(x, y)} ∪M and return y.

2. On (x, y) from § and if (x, ·) 6∈M set M = {(x, y)} ∪M .
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Protocol 10 Checking Equality to 0 in the FRO-Hybrid Model

Inputs: Parties hold a sharing JvK.

1. Party Pi queries βi ← FRO(−(vi + vi+1)) and sends βi to Pi+1.

2. Upon receiving βi−1 from Pi−1, each party Pi checks that βi−1 =
FRO(vi+1). If this is not the case, then Pi outputs reject. Otherwise,
it outputs accept.

We have the following proposition.

Proposition 3. Protocol 10 securely computes FCheckZero in the FRO-hybrid
model in the presence of one malicious corrupted party.

Proof. Let A be the real adversary who corrupts at most one party and § the
ideal world simulator. Let Pi be the corrupted party. The simulation begins
with § receiving the shares of Pi, i.e., (vi, vi+1). Then, § proceed as follows:

• If § receives accept from F ′CheckZero, then it knows that v ≡` 0 and so it can
compute the share vi−1 = −(vi + vi+1) and so it knows the honest parties’
shares and can perfectly simulate the execution, while playing the role of
FRO. If A cause the parites to reject by using different shares, then § sends
reject to F ′CheckZero.

• If § receives reject, then it chooses a random vi−1 ∈ Z2` \ {−(vi + vi+1)}
and defines the honest patries’ shares accordingly. Then, it plays the role of
FRO simulating the remaining of the protocol. By the definition of FRO, the
view of A is distributed identically in the simulated and the real execution.

Appendix to Section 3.5 - Shamir-SS Instantiation

Proof of Lemma 2: Securely Computing FRand

Lemma 7 (Lemma 2 - restated). Protocol 3 securely computes (n−τ)d parallel
invocations of FRand for J·Kτ with statistical error of at most 2−κ in the presence
of a malicious adversary controlling t < n/2 parties.

Proof. Let A be the real-world adversary. The simulator S interacts with A
by simulating the honest parties in an execution of the protocol. In doing so,
S obtains honest parties’ shares 〈r1〉H , . . . , 〈rn−τ 〉H .

We distinguish three cases:
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1. If at least one of the simulated honest parties aborts in any of the
executions of Protocol 4, then S sends abort to FRand.

2. If the checks pass but the honest parties’ shares are inconsistent, S
outputs fail. By Lemma 3 this only happens with probability at most
2−κ, allowed by the claim.

3. In the remaining case, the checks of Protocol 4 pass and the honest
parties’ shares are consistent. S calculates the corrupted parties’ shares
〈r1〉C , . . . , 〈rn−τ 〉C from the honest parties’ shares, and sends them to
FRand.

Before the invocation of FRand, the honest parties have no private inputs,
hence S simulates them perfectly and A’s view will be identical to the real
execution. Thus, the simulated honest parties will abort in the ideal execution
precisely when they would in the real execution.

The only thing it remains to prove is that if the parties do not abort,
the output shares are identically distributed in the real and ideal executions.
In particular, we need to prove that in the real execution, the sharings are
independent and uniformly sampled from 〈·〉.

Let H ′ ⊆ H be a subset of honest parties of size n − τ , and let C :=
{1, . . . , n} \H denote its complement. Let AH , AC denote the submatrices of
A corresponding to the columns indexed by H ′ and C respectively. Let 〈\H〉
denote the vector 〈si〉i∈H of length n− τ , and correspondingly 〈\C〉 := 〈\i〉i∈C .
Then (〈r1〉, . . . , 〈rn−τ 〉)T = AH〈\H〉+AC〈\C〉. Since 〈\H′〉 is wholly generated
by the honest parties, it consists of n− τ independent and uniformly random
sharings of 〈·〉. AH is invertible (since A is hyperinvertible), hence we also have
that 〈\H′〉 consists of independent and uniformly random sharings. Adding a
fixed AC〈\C〉 will not affect the distribution, hence the sharings 〈r1〉, . . . , 〈rn−τ 〉
are independent and uniformly random sharings.

Proof of Lemma 5: Securely Computing FMult

Lemma 8 (Lemma 5 - restated). Protocol 5 securely computes FMult with
statistical error ≤ 2−κ in the FRand-hybrid model in the presence of a malicious
adversary controlling t < n/2 parties.

Proof. Without loss of generality, assume 2τ + 1 = n (recall that τ is the secret
sharing threshold and not the number of corrupted parties, and so the proof
still holds for any t < n/2).

For the offline phase, the simulator acts as in Lemma 2. By the proof, we
have that JrKτ is a correct sharing. The sharing Jr′K(2τ) is not well-defined,
because the adversary can change its mind about its shares at any time.
However, the adversary always knows the additive error r′−r that it introduces
by changing its shares.
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For the online phase, S simulates the honest parties towards A.
We distinguish two cases:

• Case 1: P1 is not corrupt. The simulated P1 receives {ui}i∈C from A.
If it receives ⊥ for any value ui, it sends abort to FMult and simulates
P1 aborting. Otherwise, it calls FMult and receives {xi}i∈C , {yi}i∈C . For
any i ∈ C, since S knows xi, yi, r′i, it may calculate δi = xiyi − r′i and
thus the value π(λiδi) the adversary is supposed to send if it behaves
honestly. The simulator can therefore extract d =

∑
i∈C ui − π(λiδi). S

does not know the true value of δ, however it may sample δ ← Z2` , send
it to the corrupted parties, and calculate the corrupted parties’ shares as
zi = ri + δ + d.

It then simulates the broadcast of δ. If the broadcast aborts, S simulates
the parties aborting and sends abort to FMult. Otherwise, it sends
d, {zi}i∈C to FMult, and outputs whatever A outputs.

In the ideal execution, A receives a random δ. It cannot distinguish this
from the real value x · y − r, since r is uniformly random and by privacy
of the secret-sharing scheme it does not have any information on it.

• Case 2: P1 is corrupt. S samples JδK(2τ) ← J·K(2τ). For i ∈ H it sends
ui = π(λiδi) to the corrupted P1. The simulated honest parties receive an
identical broadcasted value δ′, otherwise the broadcast protocol aborts.

Since S knows δ, it can extract d := δ′ − δ, and calculate the corrupted
parties’ shares as zi = ri + δ′. It then sends d, {zi}i∈C to FMult, and it
outputs whatever A outputs.

As mentioned above, the adversary cannot distinguish whether it is talking
to a simulator or the real parties, hence its output will be identical.

In the ideal execution where no abort took place, the actual (non-simulated)
parties receive their shares {zi}i∈H directly from FMult. The shares are consis-
tent and will reconstruct to the secret z = x · y + d. In the ideal execution, the
shares are generated by the probabilistic function share(z, {zi}z∈C), such that
the shares are uniformly random subject to the constraints on the shares.7 In
the real execution, the shares also correspond to z. The sharing in the real
execution is calculated as JrKτ + δ, where JrKτ is a uniformly random sharing.
Therefore, the outputs are identical in both executions.

Reducing Communication Using Pseudo-Randomness [30, 119]

Our protocol as described so far is information-theoretic. We can reduce
communication by using a pseudo-random generator in the following way.
Assume that each pair of parties hold a joint random seed. Then, when party

7Depending on the privacy threshold the constraints may fully determine the shares.
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Pi shares an element with degree t, it is possible to derive t shares from the
seed known to Pi and the corresponding party, and set the remaining t + 1
shares (including the dealer’s own share) given the pseudo-random shares and
the value of the secret. Thus, only t shares need to be transmitted, thereby
reducing communication by half. Using the same reasoning, it is possible to
share a secret using 2t-degree without any interaction. Here n− 1 = 2t shares
are computed using the seed known to the dealer and each party, and then the
dealer sets its own share such that all shares will reconstruct to the secret. We
can use this idea to also reduce communication in the multiplication protocol.
Instead of broadcasting δ, party Pi can share it to the parties with degree t, and
use the above optimization, such that P1 will have to send t elements instead
of n− 1. We note that here instead of comparing δ (to ensure correctness of
output sharings), the parties can perform a batch correctness check (Protocol 4)
for all sharings dealt by P1 before the verification step in the main protocol.
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Related work on secure inference

Secure evaluation of Neural Networks can be traced back to at least the work
by Orlandi et al. [16, 120] which present a solution based on HE techniques.
Several later works rely on HE techniques either in full or in part. CryptoNets
[80] use Leveled Homomorphic Encryption (LHE), which necessitates bounding
the number of operations a priori. In addition, HE only permits evaluation of
polynomials and as such cannot compute e.g., the Rectified Linear activation
functions (the function x 7→ max(0, x)) and the authors therefor rely on the
approximation x 7→ x2. However, and as pointed out by Gilad-Bachrach et
al. [80], such an approximation makes training difficult for larger networks,
the issue being that the derivative of x2 is unbounded. Chabanne et al. [40]
improve upon CryptoNets by evaluating networks with 6 hidden layers (as
opposed to only 2 as in Gilad-Bachrach et al.). More recently, Bourse et al. [31]
obtain faster evaluation albeit for a smaller network (one and two hidden layers)
by combining FHE and Discretized Neural Networks (i.e., networks where
weights are in {1,−1}).

One of the downsides of HE based solutions are their inefficiency and inability
to handle common activation functions. Gazelle [100] combines garbled circuits
(GC) with additive HE (AHE) in order to obtain a more efficient system. The
boost in efficiency is attributed to an efficient method of switching between
the AHE scheme and a GC, where the former is used to compute convolutions
and fully connected layers, while the latter is used to compute the network’s
activation functions.

The idea of using multiple different protocols to achieve faster predictions
have been used before [100]. MiniONN [112] develops a technique for turning
a pretrained model into an oblivious one, which can be evaluated using a mix
of HE, additive secret sharing and GC. Chameleon [130], which is an extension
of the ABY framework by Demmler et al. [65], likewise use secret sharing
for matrix operations and GC for activation functions. More recently, ABY3
by Mohassel and Rindal [117], also benchmark secure evaluation (albeit the
authors do not implement full inference) in a framework that relies on a mix of
secret sharing, boolean (i.e., GMW) and garbled circuits.

Finally, like solutions relying purely on HE have been considered before,
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so has solutions that rely purely on GC or MPC; the latter of which is most
relevant to this work. DeepSecure [132] is perhaps the first work to take a pure
GC based approach for evaluating Neural Networks. More recently XONN
[131] builds a very efficient GC based solution by noting that Binarized Neural
Networks [96] (i.e., networks with weights that are bits) can be evaluated
very efficiently. XONN shows that evaluating deep networks (> 20 layers) is
possible. A different approach is taken by Ball et al. [13] where the authors
use the arithmetic garbling technique of Ball et al. [12] to evaluate Neural
Networks. Pure MPC based solutions have been studied in SecureML [118],
which employs a three-party honest majority protocol. A major performance
boost in SecureML can be attributed to the way fixed point arithmetic is
handled, where the authors show that it is possible to just have parties perform
the truncation locally. SecureNN [142] can be seen as an extension of SecureML
where both three- and four-party protocols (both with one corrupted party)
are used. Concurrently to this work, CrypTFlow [109] builds a system on top
of SecureNN that is capable of evaluating very large networks (>100 layers)
in reasonable time. Another very attractive feature of CrypTFlow is that it
provides a more complete framework that accepts standard Tensorflow trained
models as input (hence the name).

MPC Protocols

Dishonest Majority

Protocols in the dishonest majority setting are often harder to develop and
they are also more complex than honest majority ones. They are typically
based in additive secret sharing and use authentication tags for active security
to ensure that the openings of shared values are done correctly.
• SPDZ2k: This is the first actively secure protocol over Z2k in the dishonest
majority setting, and it was proposed initially by Cramer et al. [51] and
implemented subsequently by Damgård et al. [62]. This protocol can be seen
as an extension of MASCOT [104] (itself being an extension of SPDZ, hence
the name). Multiplications in SPDZ2k are handled using multiplication triples,
which are preprocessed using oblivious transfer like inMASCOT. Authentication
is handled like in SPDZ, but with an addition that allows this method to work
over Z2k which consists of working over the ring Z2k+s and using the upper s
bits for authentication.
• OTSemi2k, OTSemiPrime: These protocols denote cut-down versions of
SPDZ2k and MASCOT, respectively. In particular, they omit the usage of
authentication tags and the so-called “sacrifice” where two triples are checked
against each other and only of them can subsequently used in the protocol.
There essentially remains the generation of multiplication triples using OT.
• LowGear: This is an actively secure protocol for computation modulo a prime.
It uses semi-homomorphic encryption based on learning with errors. See Keller
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et al. [105] for details.

Honest Majority

Honest majority protocols are typically developed using Shamir Secret Sharing
(for an arbitrary number of parties) or Replicated Secret Sharing (for small
number of parties). Since we consider only a small number of servers we focus
on the replicated SS instantiations.
• Replicated2k, ReplicatedPrime: This protocol secret-shares a value x among
three parties P1, P2, P3 by letting each Pi have random pairs (xi, xi+1) (indexes
wrap around modulo 3) subject to x ≡ x1 +x2 +x3 mod M , where M = 2k for
the ring case and M = p for the field case. The most efficient passively secure
multiplication protocol to date is the one presented by Araki et al. [8], where
the total communication involves 3 ring elements.
• PsReplicatedPrime: This protocol by Lindell and Nof [111] extends ReplicatedPrime
to active security by preprocessing potentially incorrect triples and proceeding
to the online phase using these, optimistically, checking their correctness at the
end of the execution using sacrificing techniques.
• PsReplicated2k: This protocol by Eerikson et al. [67] is an extension of the
one by Lindell et al. [111] to the ring setting. This is achieved by incorporating
ideas by Cramer et al. [51] in order to adapt the post-sacrifice step by Lindell
et al. to the ring Z2k .

Extended results

Communication and preprocessing. Table 1 and Table 2, analogous to
Table 4.3 and Table 4.4, presents the communication, in Gigabyes, used by
the protocols we consider when evaluating different ImageNet models. As
noted in Section 5.7, dishonest majority protocols require a great deal of
preprocessing material in order to evaluate a network, which can be seen by
the large differences between the values in columns corresponding to dishonest
majority, with respect to honest majority. Interestingly, the protocol over Fp
are cheaper with active security than the protocol over Z2k . This is likely due to
the fact that proprocessing in Fp (with active security) is more communication
efficient, than the protocol over Z2k , as illustrated in Table 1 and Table 2.

WAN Benchmarks. We have also run the smallest model in a WAN setting
where each party is located on a different continent. For computation over rings
with probablistic truncation, the timings range from 110 seconds for passive
honest-majority computation to 28,000 seconds for active dishonest-majority
computation.
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Variant Accuracy Trunc.

Passive Security

Dishonest Maj. Honest Maj.

Top-1 Top-5 Z2k Fp Z2k Fp

V1 0.25_128 39.5% 64.4% Prob. 199.2 37.1 0.1 3.4
Exact 296.3 44.6 1.0 4.0

V1 0.25_160 42.8% 68.1% Prob. 311.2 58.0 0.1 5.4
Exact 462.8 69.6 1.5 6.2

V1 0.25_192 45.7% 70.8% Prob. 447.5 83.4 0.1 7.7
Exact 665.6 100.2 2.2 8.9

V1 0.25_224 48.2% 72.8% Prob. 608.5 113.3 0.2 10.5
Exact 905.3 136.3 3.0 12.2

V1 0.5_128 54.9% 78.1% Prob. 438.0 79.1 0.1 6.9
Exact 631.8 94.0 1.9 7.9

V1 0.5_160 57.2% 80.5% Prob. 684.6 123.4 0.2 10.7
Exact 987.4 146.8 3.0 12.4

V1 0.5_192 59.9% 82.1% Prob. 984.8 177.6 0.3 15.5
Exact 1420.7 211.3 4.4 17.9

V1 0.5_224 61.2% 83.2% Prob. 1339.4 241.6 0.3 21.0
Exact 1932.6 287.4 5.9 24.3

V1 0.75_128 55.9% 79.1% Prob. 716.9 125.9 0.2 10.3
Exact 1007.6 148.3 2.9 11.9

V1 0.75_160 62.4% 83.7% Prob. 1120.8 196.7 0.3 16.1
Exact 1574.8 231.7 4.6 18.6

V1 0.75_192 66.1% 86.2% Prob. 1612.4 283.0 0.4 23.2
Exact 2266.2 333.5 6.6 26.8

V1 0.75_224 66.9% 86.9% Prob. 2193.2 385.0 0.5 31.5
Exact 3082.9 453.7 8.9 36.5

V1 1.0_128 63.3% 84.1% Prob. 1035.9 177.6 0.2 13.7
Exact 1423.5 207.6 3.9 15.9

V1 1.0_160 66.9% 86.7% Prob. 1619.6 277.6 0.4 21.5
Exact 2224.9 324.4 6.1 24.8

V1 1.0_192 69.1% 88.1% Prob. 2330.3 399.4 0.5 30.9
Exact 3201.9 466.8 8.7 35.7

V1 1.0_224 70.0% 89.0% Prob. 3169.9 543.5 0.7 42.0
Exact 4356.2 635.1 11.9 48.6

Table 1: Communication complexity, in Gigabytes, of securely evaluating some
of the networks in the MobileNets family with passive security, in a LAN
network. The first number in variant is the width multiplier and the second
is the resolution multiplier. Top-1 accuracy measures when the truth label is
predicted correctly by the model whereas Top-5 measures when the truth label
is among the first 5 outputs of the model.
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Variant Accuracy Trunc.

Active Security

Dishonest Maj. Honest Maj.

Top-1 Top-5 Z2k Fp Z2k Fp

V1 0.25_128 39.5% 64.4% Prob. 1748.4 282.4 2.5 8.7
Exact 2578.2 335.3 4.7 10.3

V1 0.25_160 42.8% 68.1% Prob. 2731.2 423.9 3.8 13.6
Exact 4027.1 511.9 7.3 16.1

V1 0.25_192 45.7% 70.8% Prob. 3927.0 600.0 5.4 19.6
Exact 5792.2 723.3 10.4 23.2

V1 0.25_224 48.2% 72.8% Prob. 5339.9 811.3 7.3 26.6
Exact 7877.7 987.2 14.2 31.5

V1 0.5_128 54.9% 78.1% Prob. 3834.5 581.7 5.8 18.5
Exact 5492.6 687.4 10.2 21.7

V1 0.5_160 57.2% 80.5% Prob. 5993.7 899.7 9.0 28.8
Exact 8583.4 1075.6 15.9 33.8

V1 0.5_192 59.9% 82.1% Prob. 8621.7 1286.9 12.9 41.5
Exact 12349.8 1533.4 22.9 48.7

V1 0.5_224 61.2% 83.2% Prob. 11725.6 1744.6 17.5 56.4
Exact 16799.2 2079.1 31.2 66.3

V1 0.75_128 55.9% 79.1% Prob. 6264.3 916.3 10.0 29.2
Exact 8750.4 1074.9 16.7 34.1

V1 0.75_160 62.4% 83.7% Prob. 9793.1 1428.3 15.6 45.7
Exact 13676.4 1692.3 26.1 53.2

V1 0.75_192 66.1% 86.2% Prob. 14089.1 2044.4 22.4 65.8
Exact 19680.3 2432.0 37.5 76.6

V1 0.75_224 66.9% 86.9% Prob. 19163.5 2783.4 30.5 89.5
Exact 26773.0 3294.5 51.0 104.2

V1 1.0_128 63.3% 84.1% Prob. 9037.9 1286.1 15.2 41.1
Exact 12352.1 1514.8 24.2 47.5

V1 1.0_160 66.9% 86.7% Prob. 14128.8 2009.9 23.7 64.2
Exact 19306.2 2361.8 37.7 74.3

V1 1.0_192 69.1% 88.1% Prob. 20328.5 2889.9 34.1 92.4
Exact 27782.7 3400.7 54.2 106.9

V1 1.0_224 70.0% 89.0% Prob. 27652.5 3928.3 46.4 125.8
Exact 37798.3 4615.2 73.7 145.4

Table 2: As previous table, but active security.
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Bilinear maps for MPC

We formalize the intuition from Section 5.2 below where we describe the protocol
Πbilinear in detail.

For this protocol we assume a functionality FOuterProd that produce ran-
dom shares Ja1K, . . . , JadK, Jb1K, . . . , JbdK over F, together with JaibjK for i, j ∈
{1, . . . , d}. This is used to produce the “bilinear triples” mentioned earlier.
(Notice further that the case where d = 1, FOuterProd corresponds to a classical
triple-preprocessing functionality.) Also, in the protocol below we assume that
{u1, . . . , ud} is a basis for U and that {v1, . . . , vd} is a basis for V .

Protocol 11 Protocol Πbilinear

Inputs: JuKU and JvKV .

Output: JwKW where w = φ(u, v) ∈W .
Offline Phase:

1. The parties call
(
{JaiK}di=1, {JbiK}di=1, {JaibjK}di,j=1

)
← FOuterProd.

2. The parties use the LSS homomorphisms x 7→ x · ui and x 7→ x · vi
to locally compute JαKU =

∑d
i=1JaiK · ui and JβKV =

∑d
i=1JbiK · vi,

respectively.

3. The parties compute Jφ(aiui, bjvj)KW ← JaibjK · φ(ui, vj) using the
LSS homomorphisms x 7→ x · φ(ui, vj).

4. The parties compute locally Jφ(α, β)KW =
∑d

i,j=1Jφ(aiui, bjvj)KW .

Online Phase:

1. The parties open δ ← JuKU − JαKU and ε← JvKV − JβKV

2. The parties use the LSS homomorphism φ(δ, ·) to compute
Jφ(δ, β)KW ← φ(δ, JβKV ), and similarly they use the LSS homomor-
phism φ(·, ε) to compute Jφ(α, ε)KW ← φ(JαKU , ε).
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3. The parties compute locally and output Jφ(u, v)KW = φ(δ, ε) +
Jφ(δ, β)KW + Jφ(α, ε)KW + Jφ(α, β)KW .

Proofs

Proof of Lemma 6

Proof. Note that JαKGT
/JβKGT

= Je(σ1, X +
∑

imiYi)/e(σ2, H)KGT
which is

1GT
if and only if e(σ1, X +

∑
imiYi) = e(σ2, H); that is, if the signature

is valid. Thus we have that the distribution of JbKGT
= J(a/β)ρKGT

is either
uniformly random (if α 6= β), or 1GT

(if α = β). To see that JbKGT
is uniformly

random when α 6= β it suffices to note that α/β is a generator of GT and that
ρ was picked at random.

Proof of Theorem 2

Proof. We begin by introducing some notation. Let A ⊆ C and A′ ⊆ C ′ be the
corresponding subsets of corrupt parties. For an honest party Pi it should hold
that si =

∑t+1
j=1 sij , where sij is the additive share sent by Pi to Pj in step 1.

However, for Pi ∈ A, this may not be the case, so we define δi ∈ F such that
si + δi =

∑t+1
j=1 sij . Finally, each Pi ∈ U is supposed to send aij in step 3, but

naturally, parties in A ∩ U may not follow this. We define εij for Pi ∈ A ∩ U
and j = 1, . . . , n in such a way that aij + εij is the value sent by Pi to P ′j in
step 3.

It is easy to see that the value reconstructed by P ′j in step 4 is s′j =∑t+1
i=1 aij = εj + δj + sj +

∑t
k=0 rk · jk, where εj =

∑t+1
i=1 εij , rk =

∑t+1
i=1 rki

(notice that r0 = 0). This can be written as s′j = γj + h(j), where h(x) =

f(x) + g(x) ∈ F≤t[x], g(x) =
∑t

k=0 rk · xk ∈ F≤t[x] and γj = εj + δj .
From the above it follows that the final sharings s′j = γj + h(j) output by

the honest parties P ′j ∈ C ′ \A′ are consistent: The adversary knows all γi, so
it can re-define s′j ← s′j − γj + q(j) for P ′j ∈ A′, where q(j) ∈ F≤t[x] is such
that q(i) = γi for Pi ∈ C ′ \ A′, and in this way the sharings (s′1, . . . , s

′
j) are

consistent with the polynomial h(x) + q(x) ∈ F≤t[x]. Furthermore, if all parties
behave honestly then q(x) ≡ 0, so the shares (s′1, . . . , s

′
n) are consistent with

the polynomial h(x) which satisfies h(0) = f(0) + g(0) = s+ 0 = s.
Finally, we show that privacy holds. To see this, it suffices to show that

(s′1−s1, . . . , s
′
n−sn) are uniform shares of some value that the adversary knows.

We first claim that, fromt the point of view of the adversary, (g(1), . . . , g(n))
are uniformly random shares of 0. This holds because s′j − sj = (sj + q(j) +
g(j))− sj = q(j) + g(j)
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Now we argue privacy. For this we assume that q(x) ≡ 0 (that is, the
adversary did not cheat overall). This simplifies notation, but it is also without
loss of generality because as we saw above the worst thing an adversary can do
is shifting the secret by an amount the adversary itself knows. First, notice
that the view of the adversary is

({sij}Pi∈A,Pj∈U , {gi(x)}Pi∈U∩A︸ ︷︷ ︸
Sampled locally

, {sij}Pi∈C,Pj∈U∩A︸ ︷︷ ︸
Received in step 1

, {aij}Pi∈U,P ′j∈A′︸ ︷︷ ︸
Received in step 4

),

where gi(x) =
∑t

k=0 rki · xt (notice that g(x) =
∑t+1

i=1 gi(x)). We claim that
this view is independent of the secret s. To see this, we define a simulator
§ that, on input ({sij}Pi∈A,Pj∈U , {gi(x)}Pi∈U∩A) and without knowledge of s,
produces an indistinguishable view.

The simulator § is defined as follows:

• Sample sij ∈R F for Pi ∈ C \ A,Pj ∈ U ∩ A, and set sij := sij for
Pi ∈ A,Pj ∈ U ∩A.

• Define aij := sji + gi(j) for Pi ∈ U ∩ A,P ′j ∈ A′, and aij ∈R F for
Pi ∈ U \A,P ′j ∈ A′

• Output

({sij}Pi∈A,Pj∈U , {gi(x)}Pi∈A, {sij}Pi∈C,Pj∈U∩A, {aij}Pi∈U,P ′j∈A′).

The two views are perfectly indistinguishable: {sij}Pi∈C,Pj∈U∩A ≡ {sij}Pi∈C,Pj∈U∩A
because, given that |U ∩A| ≤ t < t+ 1, in the real execution the honest par-
ties Pi ∈ C \A sample {sij}Pj∈U∩A independently and uniformly at random,
like in the simulation. Also {aij}Pi∈U,P ′j∈A′ ≡ {aij}Pi∈U,P ′j∈A′ given the rest
of the views because, in the real execution, {aij}Pi∈U\A,P ′j∈A′ are uniformly

random since they are only conditioned on aj =
∑t+1

i=1 aij = sj + g(j) for
P ′j ∈ A′, but since |A′| ≤ t and g(x) ∈R F≤t[x] with g(0) = 0, {g(j)}P ′j∈A′ are
independent and uniform so {aj}Pj∈A′ look uniform and independent to the
adversary.

Proof of Theorem 3

Sketch. We only provide a sketch of the corresponding simulation-based proof.
Let s′ = s+δ and σ′2 = σ1+γ, where δ ∈ F and γ ∈ G1 are the errors introduced
by the adversary in the ΠPartialPSS protocol. Our simulator simply emulates
the role of the honest parties, with these virtual honest parties using random
shares as inputs. The simulator also emulates all the necessary functionalities
like FDotProduct, FCoin and FRand. Using an argument along the lines of the
proof of Theorem 2, the simulator is then able to learn the errors δ and γ. The
simulator then makes the virtual parties abort if δ 6= 0 or γ 6= 0G1 .
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We show that the simulated execution is indistinguishable to the adversary
from a real execution. To see this, first observe that in the real execution,
the honest parties abort if the output of Verify∗ is not 0. Furthermore, it is
easy to see that the output of ΠVerify(Js′KC

′
, (σ1, Jσ′2K

C′), pkC) is equal to 0 if
and only if δ · e(σ1, Y ) = e(γ,H). Given this, the only scenario in which the
two executions (real and simulated) could differ is if δ 6= 0 or γ 6= 0G1 , but
δ · e(σ1, Y ) = e(γ,H), since in this case the honest parties in the real execution
do not abort, but the honest parties in the ideal execution do. However, we
show this cannot happen: If δ 6= 0 or γ 6= 0G1 , then δ · e(σ1, Y ) 6= e(γ,H), with
overwhelming probability.

To see why the claim above holds, we make a reduction to the co-CDH
problem defined above: An adversary gets challenged with (α1H,α2H

′), and
its goal is to find α1α2H. The adversary then plays the simulator above, but
uses σ1 = α1H and Y = α2H

′. Now suppose that in the simulation δ 6= 0
and δ · e(σ1, Y ) = e(γ,H ′). We can see then that this equation implies that
δα1α2 = β, where β ∈ F is such that γ = βH ′. In particular, it implies that
α1α2H = δ−1βH = δ−1γ, so the adversary, who knows δ and γ, can compute
α1α2H as above, thus breaking co-CDH. Finally, it is easy to see that if γ 6= 0
and δ · e(σ1, Y ) = e(γ,H), then δ 6= 0 with high probability since otherwise
e(γ,H) = 0, so the same argument as above works. This finishes the sketch of
the simulation-based proof of the theorem.

Shamir Secret-Sharing

Consider a setting with n parties, and let 0 < t < n. In this scheme each
party Pi gets f(i) where f(x) ∈R F≤t[x] subject to f(0) = s, and s ∈ F is
the secret.8 We denote JsKshmF = (f(1), . . . , f(n)). More formally, this scheme
Sshm is defined as (Mshm, labelshm), where Mshm ∈ Fn×(t+1) is given below, and
labelshm(i) = i:

s1

s2
...

sn−1

sn

 =


10 11 12 · · · 1t

20 21 22 · · · 2t

...
(n− 1)0 (n− 1)1 (n− 1)2 · · · (n− 1)t

n0 n1 n2 · · · nt


︸ ︷︷ ︸

Mshm∈Fn×(t+1)

·


s
r1

r2
...
rt



It is easy to see that this scheme is (n − 1, n)-secure. Over a vector space
V , sharing a point α ∈ V is done by sampling r1, . . . , rt ∈R V , and setting
the i-th share to be αi = α +

∑t
j=1 i

j · rj . In this way, αi = f(i), where
f(x) = α+

∑t
j=1 x

j · rj ∈R V≤t[x]. We denote this by JSKshmV .

8We assume that |F| > n+ 1
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Reconstruction

Consider a shared value JsKshm = (f(1), . . . , f(n)). If t ≥ n/2, then it can
be shown that the adversary can succeed in opening an incorrect value by
modifying the shares of the corrupt parties. However, if t < n/2, this cannot
be done: The honest parties will be able to detect that the opened value is not
correct. Furthermore, if t < n/3, the honest parties can do better: On top of
detecting whether the open value is the right one, they can correct the errors
and compute the right secret. We describe these below, and we also discuss
extensions to elliptic curves.

Error detection (t < n/2). Assume t < n/2, and suppose that a most
t shares among (s1, . . . , sn) are incorrect. If all shares (s1, . . . , sn) lie in a
polynomial of degree at most t, then the reconstructed secret must be correct,
given that a polynomial of degree at most t is determined by any t+ 1 points,
in particular, it is determined by the t+ 1 ≤ n− t correct shares. In this way,
by verifying if all the shares lie in a polynmial of the right degree, the parties
can detect whether the reconstructed value is correct or not. This can be done
by interpolating a polynomial of degree at most t using the first t+ 1 shares,
and then checking whether the other shares are consistent with this polynomial.

Alternatively, the parties can use the parity check matrix H ∈ F(n−t−1)×n,
which satisfies that A · (s1, . . . , sn)T is the zero-vector if and only if the shares
si are consistent with a polynomial of degree at most t. This check can be
performed for the group sharings JP KG as well.

Error correction (t < n/3). If t < n/2 then the parties can detect whether
a reconstructed value is correct or not, but they cannot “fix” the errors in
case the value is not correct. Under the additional condition t < n/3, this
can actually be done, that is, the parties can reconstruct the correct value,
regardless of any changes the adversary does to the shares from corrupted
parties. The algorithm to achieve this proceeds, at least conceptually, as follows:
The parties find a subset of 2t + 1 shares among the announced shares that
lies in a polynomial of degree at most t; this set exists because there are at
least n− t ≥ 2t+ 1 correct shares. Then, the secret given by this polynomial is
taken as the right secret. This is correct because of the same reason as in the
previous case: This polynomial is determined by any set of t+ 1 points among
the 2t+ 1 ones that are consistent, and in particular, it is determined by the
t+ 1 = 2t+ 1− t correct shares, since at most t of them can be incorrect.

The main bottleneck in the reconstruction algorithm sketched above is
finding a consistent subset of 2t+ 1 shares, since there are exponentially-many
such sets. To this end, an error-correction algorithm like Berlekamp Welch is
used [77], which has a running time that is polynomial in n.
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Finally, it is important to remark that, unlike the error-detection mechanism
above, this error-correction procedure cannot be performed over the group G.
This interesting result was shown in [125].

Dot Products of Shared Vectors

Let 2t + 1 = n, and let U, V,W be F-vector spaces of dimension d with
bases {ui}di=1, {vi}di=1 and {wi}di=1, respectively.

9 Consider a bilinear map
φ : U × V →W . For the rest of this section we consider Shamir secret sharing,
and we omit the superscript shm from the sharings, and consider explicitly
the degree of the polynomial used for the sharing: J·Kh denotes Shamir secret
sharing using polynomials of degree at most h.

Consider shared values Jx1KtU , . . . , JxLKtU , Jy1KtV , . . . , JyLKtV . In this section
we describe a protocol to compute Jz + δKtW , where z =

∑L
`=1 φ(x`y`) and

δ ∈W is some error known to the adversary. The main building blocks of the
protocol are the following:

• The parties can locally obtain Jφ(α, β)K2t
W from JαKtU and JβKtV . To see

this, write JαKtU = (f(1), . . . , f(n)) and JβKtU = (g(1), . . . , g(n)), for some
f(x) ∈ U≤t[x] and g(x) ∈ V≤t[x] such that f(0) = α and g(0) = β. Write
f(x) =

∑t
i=0 x

i · ri and g(x) =
∑t

i=0 x
i · si, and let h(x) =

∑t
i,j=1 x

i+j ·
φ(ri, sj) ∈ W≤2t[x]. It is easy to see that h(0) = φ(α, β) and that
h(i) = φ(f(i), g(i)) for all i = 1, . . . , n, so Jφ(α, β)K2t

W = (h(1), . . . , h(n)).

• There exists a protocol ΠDoubleShare that produces a pair (JwKtW , JwK2t
W ),

where w ∈R W . Such a pair can be produced from d pairs (JriKtF, JriK
2t
F )

by defining JwKkW =
∑d

i=1JriK
k · wi for k = t, 2t. These pairs over F can

be produced using the protocol from [58].

With these tools at hand we are ready to describe our main protocol.

Protocol 12 Protocol Πshm
DotProduct

Inputs: Shared values Jx1KU , . . . , JxLKU , Jy1KV , . . . , JyLKV .

Output: Jz + δKW , where z =
∑L

`=1 φ(x`, y`) and δ ∈ W is some error
known to the adversary.

1. Call (JwKtW , JwK2t
W )← ΠDoubleShare

2. Parties locally compute Jφ(x`, y`)K2t
W ← φ(Jx`KtU , Jy`K

t
V ), for ` =

1, . . . , L;

9As in Section 5.2, the condition that all three spaces have the same dimension is not
necessary.
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3. Parties compute JeKW = JwK2t
W +

∑L
`=1Jφ(u`, v`)K2t

W and send the
shares of e to P1.

4. P1 uses the n = 2t+ 1 shares received to reconstruct e+ δ (where δ
is the error the adversary may introduce by lying about its shares),
and broadcasts10 e+ δ to all parties.

5. All parties set Jz + δKtW = (e+ δ)− JwKtW .

The protocol is private because the only value that is opened is e, which is
a perfectly masked version of the sensitive value z, given that w is uniformly
random and unknown to the adversary. The communication complexity of
Πshm

DotProduct is CshmDotProd = d · log(|F|) · 5.5 · n, using the optimization from [88].

Optimizations

Optimizations for PSS

Optimizing the signatures. As we noted in Section 5.4, we can use the
more efficient functionality FDotProduct∗ instead of FDotProduct, at the expense of
allowing the adversary to produce incorrect signatures by adding any error to
the second component of the signature. However, this is completely acceptable
in our setting. In fact, the adversary can already add an error to the second
component of the signature when using the ΠPartialPSS protocol. Hence, in
our protocol ΠPSS we use the modified version of ΠSign that uses FDotProduct∗
instead of FDotProduct.

Using AMD codes. The fact that the worst that can happen in the
ΠPartialPSS protocol is that the transmitted message is wrong by an additive
amount known by the adversary implies that other methods to ensure cor-
rectness of the transmitted value can be devised, like the MACs described in
Section 5.3 for additive secret-sharing. Although the overall computation is
much more efficient since it does not involve any public-key operations, the
communication of the method we present here is worse by a factor of 2.

Optimizations for Input Certification

Optimization if multiple parties provide input. If all parties P1, . . . , Pn
use ΠCertInput to certify their input, each party can call ΠCertInput, which, in
the case that a protocol with guaranteed output delivery is used to compute
ΠVerify, allows parties to identify exactly which party provided a faulty input.
However, one can improve the communication complexity if a “global” abort is
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accepted, that is, if the parties do not abort then all the inputs are correctly
certified, but if they do abort, then it is not possible to identify which party
provided an incorrect input (however, for protocols without guaranteed output
delivery, this is acceptable since the abort can already happen due to malicious
behavior in other parts of the protocol).

The optimization works as follows. Consider the n ΠCertInput executions,
corresponding to all parties. At the end of step 2, n shares Jr1KGT

, . . . , JrnKGT

have been produced. The parties then locally compute JrKGT
=
∏n
i=1JriKGT

(recall that GT is a multiplicative group), open r, and accept the secret-shared
inputs if and only if this opened value equals 1GT

. Notice that, if at least one
signature is incorrect, then at least one ri is uniformly random, so r will be
uniformly random too and therefore the probability that it equals 1GT

in this
case is at most 1/|GT |.

Communication Complexity of CHURP

CHURP, a dynamic PSS protocol proposed in [113], is the state of the art
in terms of communication complexity. At a high level, CHURP is made of
two main protocols, Opt-CHURP, which is able to detect malicious behavior
during the proactivization but is not able to point out which party or parties
cheated, and Exp-CHURP, which performs proactivization while enabling cheater
detection at the expense of being heavier in terms of communication. Since
in this work we have described a PSS protocol with abort, we compare our
protocol against Opt-CHURP.

The protocol Opt-CHURP is comprised of three main subprotocols: Opt-
ShareReduce, Opt-Proactivize and Opt-ShareDist. In the first sub-protocol,
Opt-ShareReduce, the parties in C distribute shares of their shares towards the
parties in C ′. A threshold of 2t is used for these “two-level” shares to account
for the fact that the adversary may control t parties in each committee C and
C ′. We could avoid such high degree sharing in our ΠPartialPSS protocol since
there the parties do not share their shares directly. In Opt-ShareReduce, to
ensure that a party sends the right share, the parties must also communicate
commitments and witnesses for certain polynomial commitment scheme (see
[113] for details). The concrete communication complexity of this step is 2Ln2

elements, where L is the amount of shared field elements being proactivized.
In the second stage, Opt-Proactivize the parties in C ′ produce reduced-shares

(that is, “shares of shares”) of 0 that are added to the reduce-shares of the secret.
We will not discuss the details fo this procedure here, beyond mentioning that
this requires the parties to exchange shares and proofs in order to ensure the
correctness of this method. This incurs a communication complexity of 5Ln2

field elements, on top of requiring publishing n hashes on a blockchain, say
256n bits using SHA256, which is a requirement that our protocol ΠPSS does
not have.
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In the final stage, Opt-ShareDist, each party in C ′ sends the reduce-shares
of the i-th share to party P ′i , who reconstructs the refreshed share. Again,
opening information for certain commitments must be transmitted. This leads
to a communication complexity of 2Ln2.

We see then that the total (off-chain) communication complexity in Opt-
CHURP is 9Ln2 log(|F|) bits.

Secure Computation over Elliptic Curves

So far we have presented a fairly comprehensive “toolbox” for performing
secure computation over elliptic curves. We may view the LSS homomorphism
φ : Fp → G defined by φ(x) = x · G as a function that encodes x into the
exponent of G. While this enables the applications we presented in Section 5.4,
Section 5.5 and Section 5.6, it does not an efficient way of decoding.

The following example illustrates why this might lead to issues in some
applications: Parties hold JmKF and wish to encrypt it using El-Gamal. Using
an LSS homomorphism on JmK would effectively encode m in the exponent,
and then we could use secure computation over elliptic curves to compute the
encryption of m.

The above works for encryption. But what if the parties wish to recover
JmK from the encryption? Clearly, a party cannot recover mi from mi · G
since mi (the share) is a random field element. On the other hand, we cannot
reconstruct m ·G towards a party as that would reveal the message.

The issue above arises from the fact that the encoding of JmK was done using
the LSS homomorphism x 7→ x ·G, which is highly efficient due to its linearity,
but has a “one-wayness” to it, making it very hard to decode. In the following,
we show a different way of encoding a shared field element JmK in such a way
that, although the encoding itself is interactive (and therefore less efficient
than the LSS homomorphism encoding described above), the decoding process
is practically efficient. This enables a seamless interplay between traditional
secure computation over F, and secure computation over an elliptic curve group
as defined here.

Secure Encoding and Decoding

We now show how to map secret-shared messages into curve points, and back,
in the presence of an active adversary and an honest majority. Consider the
following commonly used injective encoding for encoding bit-strings into points
on the curve G over F (see [74]): To encode a message m ∈ {0, 1}`, with
` ≤ (1/2− ε) log2 p for a fixed ε ∈ (0, 1/2), pick a random integer x ∈ [0, p− 1]
such that m = x mod 2`. If x is a valid curve-point for G, then output (x, y),
and otherwise pick a new random x and start over. We denote this encoding
by En and its inverse as De (notice that De simple discards y and returns x
mod 2`).
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Our aim now is to implement (En,De) securely; that is, we wish to compute
JEn(x)K given JxK with x ∈ {0, 1}`, and JDe(X)K given JXKG with En(m) =
X ∈ G for some m. For this we will use two functionalities: The first protocol
is FIsSqr, which takes as input a secret-shared value JxK and outputs 1 if x is a
square, and 0 otherwise. That is, if FIsSqr outputs 1, then there exists a value y
such that x2 = y mod p. The other protocol is FSqrt which, on input a square
JxK, outputs JyK satisfying y = x2 mod p.11

In the following, we assume that the curve is given as y2 = x3 + ax + b
where a and b are constants.

Decoding. We begin with decoding. Given a secret-sharing JEn(m)KG where
En(m) = (x, y) and m ≡ x mod 2`, the goal is to obtain JmK. Besides
JEn(m)KG, we assume that we also have access to a secret-sharing of the upper
` − log2 p bits of x and we denote this value as JrK. Write JzKG = JEn(m)KG
and let xi, resp. yi be the values that comprise the i’th party’s share of z.
To decode z, each party first re-shares the xi and yi they hold, after which
everyone computes the point addition formula over all the coordinates. In a
nutshell, this is the same idea used when decomposing a number into bits. In
this scenario, parties mask the value they want to bit-decompose and then
compute a binary adder to unmask each bit.

Protocol 13 Protocol ΠDecode

Inputs: JXKG, JrK where r was the randomness added during encoding.

Outputs: JmK the encoded message, secret-shared over the basefield.

1. Each party Pi parses their share of JXKG as the pair (xi, yi) and
secret-shares JxiK, JyiK towards the other parties.

2. Parties apply a parity check matrix to check that the reshared values
are consistent (see Appendix 5.7 for details).

3. For j = 2, . . . , t+ 1 where t is the number of corrupt parties, compute
the curve addition of the shares over the secret-shared coordinates:

a) Invoke JaK = FRand(F).

b) JzK← FMult(Jxj − xj−1K, JaK) and open z.

c) Compute JdK = J(xj − xj−1)−1K = z−1JaK, JλK = FMult(Jyj −
yj−1K, JdK) and finally Jλ2K = FMult(JλK, JλK).

d) Compute Jx′K = Jλ2K− JxjK− Jxj−1K.

11We show how to instantiate these in the full version of this paper. Put briefly, FIsSqr is
straightforward when p ≡ 3 mod 4, and FSqrt can be implemented with a trick from [15] that
enables computing Jx−1K given JxK and a multiplication triple.
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e) Compute Jy′′K = FMult(JλK, Jxj − x′K) and Jy′K = Jy′′K− JyjK.

f) Set JxjK = Jx′K and JyjK = Jy′K.

4. Output Jxt+1K− JrK.

Protocol ΠDecode computes the injective encoding with complexity CShare(n)+
CCheck(n) + (t+ 1)(CRand(1) + CMult(4) + COpen(1)).

Lemma 9. Protocol ΠDecode securely outputs the lower ` bits of JXKG.

Proof. Let Xi = (xi, yi) be the i’th party’s share of X = (x, y). Notice that
X can be reconstructed as a linear combination of the Xi’s; in particular,
X =

∑t+1
i=1 Xi (we omit constants in this linear combination for the sake of

simplicity). This linear combination is computed in step 3 in the protocol, so,
at step 3.f, parties hold shares of the coordinates of X, secret-shared over the
base field. Finally, JxK − JrK removes the randomness located in the upper
log2 p − ` bits of x. Step 1 potentially poses a problem, as a corrupt party
may secret-share an incorrect value. However, the parity check applied in step
2 ensures this cannot happen, as the adversary can only modify at most t
shares.

Encoding. To encode a value x ∈ F, recall that we first need to add a bit
of randomness to it, in order to have a chance at hitting a valid x-coordinate
for our curve. Let ` be an upper bound on the size of x, i.e., x ≤ 2`. We first
consider a straightforward, but ultimately insecure, approach utilizing FCoin:
Parties use FCoin to sample a random value r < p such that its lower ` bits
are 0. Parties then call FIsSqr(JxK + r), and restart the process (i.e., go back
and pick another r) if this protocol outputs 0. However this fails to be secure.
Indeed, if x is of low entropy, then revealing whether or not JxK + r is a square,
reveals information about x itself (in particular, the adversary can rule out
values x′ for which x′ + r is a square).

We must thus resort to fancier machinations that allows us to sample an
appropriate r without revealing it. Luckily, sampling a random value where
its lower bits are zero has been used before—in particular in connection with
secure truncation protocols (see e.g., [54]). We thus assume a functionality
FsRand which outputs a secret-shared r suitable for our purposes. The final
thing we require is a tuple (JRKG, JrxK, JryK) where R = (rx, ry). Such a tuple
can be generated by sampling a random JRKG and then using step 2 in ΠDecode

to obtain JrxK and JryK.
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Protocol 14 Protocol ΠEncode

Inputs: JmK the message to be encoded.

Outputs: JEn(m)KG, JrK.

1. Sample JrK = FsRand and compute JxK = JmK + JrK.

2. Call FIsSqr(JxK). If the return value is 0, go back to the previous step.

3. Call JyK = FSqrt(Jx3K + JxKa + b). Note that parties now have JxK,
JyK which are secret-sharings of En(m) in the field.

4. Parties then compute the curve addition formula between the points
(JxK, JyK) and (JrxK, JryK). Let (JzxK, JzyK) be the result.

5. JzxK and JzyK is opened. Write Z = (zx, zy).

6. Output JEn(m)KG = JXKG = Z − JRKG and JrK.

Protocol ΠEncode computes the injective encoding of m with complexity

CEncode = CsRand(k) + CIsSqr(k) + CSqrt(1) + 2COpen(1) + CRand(1) + CMult(4).

Security comes from the fact that, at the end of step 5, parties hold Z = X+R,
and since R is random, nothing is revealed about X. In the cost formula, k
denotes the number of repetitions of the first two steps. [74] proves that a
suitable r is found in expected 3 iterations (i.e., k has expected value 3).
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